

RF Characterization of an S-I-S' Sample

S. Keckert, O. Kugeler, D. Tikhonov, J. Knobloch (HZB) A.-M. Valente-Feliciano (JLab)

19th International Conference on RF Superconductivity July 04th 2019, Dresden

On the way towards high gradient

[A. Gurevich, Appl. Phys. Lett. 88, 012511, 2006] [T. Kubo, Sc. Sci. Technol. 30, 023001, 2017]

- S-I-S' structure shields bulk superconductor (Nb)
 - $\lambda > \lambda_{\rm Nb}$
 - $B_{\rm vp}$ can be increased
 - $T_{\rm c} > T_{\rm c, Nb}$ reduces surface resistance

On the way towards high gradient

[A. Gurevich, Appl. Phys. Lett. 88, 012511, 2006] [T. Kubo, Sc. Sci. Technol. 30, 023001, 2017]

- S-I-S' structure shields bulk superconductor (Nb)
 - $\lambda > \lambda_{\rm Nb}$
 - B_{vp} can be increased
 - $T_{\rm c} > T_{\rm c, Nb}$ reduces surface resistance

The Quadrupole Resonator (QPR)

75 nm NbTiN – 15 nm AlN – bulk Nb

[Courtesy of Anne-Marie Valente-Feliciano]

THFUA3 talk by A-M. Valente-Feliciano

Baseline measurement – surface resistance

- Bulk niobium, RRR 300
- Sample manufactured at JLab
- nano-polish and EP
- Residual resistance
 23 nΩ (414 MHz)
 73 nΩ (846 MHz)

x (846/414)²

S. Keckert, SRF'19, Dresden

Baseline measurement – RF quench field

HZB Helmholtz Zentrum Berlin

- Low stored energy in QPR: $U \approx 0.1 \text{ J} @ 100 \text{ mT}$
- Pulsed measurement with few 100 W and fast power meter
- High RF quench field
 254 mT (414 MHz)
 220 mT (846 MHz)

Solid lines: Linear fit Dashed lines: Extrapolation

$$B_q(T) = B_0 \left(1 - \left(\frac{T}{T_c} \right)^2 \right)$$

S-I-S' penetration depth

S-I-S' penetration depth

S-I-S' surface resistance

S-I-S´ vs. Baseline – R(T)

2

 \rightarrow non-monotonic R(T) due to increased surface resistance near T_{pk}

S-I-S´ – R(T,B) – 845 MHz

S-I-S´ RF Quench field

- Hard magnetic quench limit at 20-25 mT
- **Fit** according to S-I-S' **multilayer theory**

S-I-S´ allows increase of bulk limit

	Nb	NbTiN
<i>T_c</i> [K]	9.3	14.3 (Lit: 17.3)
B _{max} [mT]	220 250	17

S-I-S´ RF Quench field

- Hard magnetic quench limit at 20-25 mT
- **Fit** according to S-I-S' **multilayer theory**

→ S-I-S´ allows increase of bulk limit

	Nb	NbTiN
<i>T_c</i> [K]	9.3	14.3 (Lit: 17.3)
B _{max} [mT]	220 250	17

SRF characterization of NbTiN – AIN – Nb sample at HZB

- Penetration depth measurement consistent with S-I-S´ multilayer theory
- First RF critical field measurement of an S-I-S´ structure
- Demonstrated increase of quench field
- Non-monotonic surface resistance vs. temperature
 Coupling?
 ... ?
- To be continued: Study of R_s vs. thickness

TUP073, poster by D. Tikhonov (HZB)

Thank you for your attention!

