Author: Reece, C.E.
Paper Title Page
MOP015 RF Performance Sensitivity to Tuning of Nb3Sn Coated CEBAF Cavities 55
 
  • G.V. Eremeev, W. Crahen, J. Henry, F. Marhauser, C.E. Reece
    JLab, Newport News, Virginia, USA
  • U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: Co-Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
Nb3Sn has the potential to surpass niobium as the material of choice for SRF applications. The potential of this material stems from a larger superconducting energy gap, which leads to expectations of a higher RF critical field and a lower RF surface resistance. The appeal of better superconducting properties is offset by the relative complexity of producing practical Nb3Sn structures, and Nb3Sn sensitivity to lattice disorder challenges the use of the material for practical applications. Such sensitivity is indirectly probed during SRF cavity development, when the cavity is tuned to match the desired accelerator frequency. In the course of recent experiments we have coated and tuned several multi-cell cavities. Cold RF measurements before and after tuning showed degradation in cavity performance after tuning. The results of RF measurement were compared against strain evolution on Nb3Sn surface during tuning based on CST and ANSYS models.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP015  
About • paper received ※ 26 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP016 Insights Into Nb3Sn Coating of CEBAF Cavities From Witness Sample Analysis 60
 
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: Co-Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
With the progress made in the Nb3Sn coatings on single-cell SRF cavities, development is ongoing to reproduce single-cell cavity results on practical structures such as CEBAF 5-cell cavities. During CEBAF cavity coating development, several changes from the single-cell procedure to the coating setup and the heating profile were introduced to improve the quality of Nb3Sn films. To witness the properties of grown Nb3Sn films in different cavity locations, 10 mm x 10 mm samples were positioned in strategic places within the coating chamber. Composition and structure of the samples were analyzed with surface analytic techniques and correlated with sample location during coatings. Implications from sample analysis to Nb3Sn coatings on different geometries are discussed in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP016  
About • paper received ※ 26 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP018 Recent Results From Nb3Sn Single Cell Cavities Coated at Jefferson Lab 65
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • G. Ciovati, G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • I.P. Parajuli, Md.N. Sayeed
    ODU, Norfolk, Virginia, USA
 
  Funding: Partially authored by Jefferson Science Associates under contract no. DE¬AC05¬06OR23177. Supported by Office of High Energy Physics under grants DE-SC-0014475 to the College of William and DE-SC-0018918 to Virginia Tech
Because of superior superconducting properties (Tc ~ 18.3K, Hs h ~ 425 mT and delta ~ 3.1 meV) compared to niobium, Nb3Sn promise better RF performance (Q0 and Eacc) and/or higher operating temperature (2 K Vs 4.2 K) for SRF cavities. Nb3Sn-coated SRF cavities are produced routinely by depositing a few micron-thick Nb3Sn films on the interior surface of Nb cavities via tin vapor diffusion technique. Early results from Nb3Sn cavities coated with this technique exhibited precipi-tous low field Q-slope, also known as Wuppertal slope. Several Nb3Sn single cell cavities coated at JLab ap-peared to exhibit similar Q-slope. RF testing of cavi-ties and materials study of witness samples were con-tinuously used to modify the coating protocol. At best condition, we were able to produce Nb3Sn cavity with Q0 in excess of ~ 5×1010 at 2 K and ~ 2×1010 at 4 K up the accelerating gradient of ~15 MV/m, without any significant Q-slope. In this presentation, we will dis-cuss recent results from several Nb3Sn coated single-cell cavities linked with material studies of witness samples, coating process modifications and the possi-ble causative factors to Wuppertal slope.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP018  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP030 Analysis of Surface Nitrides Created During "Doping" Heat Treatments of Niobium 106
 
  • J.K. Spradlin, A.D. Palczewski, C.E. Reece, H. Tian
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The benefits of reduced RF losses from interstitial "doping" of niobium are well established. Many of the details involved in the process remain yet to be elucidated. The niobium surface reacted with low-pressure nitrogen at 800°C presents a surface with chemical reactivity different than standard niobium. While standard "recipes" are being used to produce cavities, we seek additional insight into the chemical processes that may be used to remove the "undesirable" as-formed surface layer. This may lead to new processing routes or quality assurance methods to build confidence that all surface "nitrides" have been removed. We report a series of alternate chemistry treatments and subsequent morphological examinations and interpret the results. We also introduce a new standardized Nb sample system in use for efficient characterization of varying doping protocols and cross-laboratory calibration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP030  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP045 The LCLS-II HE High Q and Gradient R&D Program 154
 
  • D. Gonnella, S. Aderhold, A. Burrill, G.R. Hays, T.O. Raubenheimer, M.C. Ross
    SLAC, Menlo Park, California, USA
  • D. Bafia, M. Checchin, A. Grassellino, M. Martinello, A.S. Romanenko
    Fermilab, Batavia, Illinois, USA
  • M. Ge, M. Liepe, S. Posen
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: US DOE and the LCLS-II HE Project
The LCLS-II HE project is a high energy upgrade to the superconducting LCLS-II linac. It consists of adding twenty additional 1.3 GHz cryomodules to the linac, with cavities operating at a gradient of 20.8 MV/m with a Q0 of 2.7·1010. Performance of LCLS-II cryomodules has suggested that operations at this high of a gradient will not be achievable with the existing cavity recipe employed. Therefore a research program was developed between SLAC, Fermilab, Thomas Jefferson National Accelerator Facility, and Cornell University in order to improve the cavity processing method of the SRF cavities and reach the HE goals. This program explores the doping regime beyond what was done for LCLS-II and also has looked to further developed nitrogen-infusion. Here we will summarize the results from this R\&D program, showing significant improvement on both single-cell and 9-cell cavities compared with the original LCLS-II cavity recipe.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP045  
About • paper received ※ 25 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUFUA3
Development of a Qualitative Model for N-Doping Effects on Nb SRF Cavities  
 
  • A.D. Palczewski, C.E. Reece, J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • J.W. Angle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In early 2018, preliminary RF date from the LCLS-II HE program suggested two new high temperature doping recipes developed at Jefferson Laboratory (3N60) and Fermi Nation Laboratory (2N0) produced quench fields outside expectations.* Both recipes showed quench fields (while maintaining high Q0) outside the simplified model where the quench field scaled purely with the RF surface doping level. In late 2018 we developed a qualitative going on a quantitative model based on preliminary SIMS/SEM measurements of the new recipes that would explain the quench field distribution. Unfortunately, subsequent measurements invalidated the developing model. We will present our original qualitative model and new data where the model breaks down; showing the multi-variable dynamics which we now think we need to understand in order to fully model and maximize quench fields for high temperature doping.
* Palczewski, A.D. and Bafia, D., contributions TESLA Technology Collaboration University of British Columbia, Vancouver, Canada, February 5 - 8 2019
 
slides icon Slides TUFUA3 [7.176 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP029 An Experimental Analysis of Effective EP Parameters for Low-Frequency Cylindrical Nb Cavities 472
 
  • C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Work supported by the U.S. DoE, Office of Science, Office of Basic Energy Sciences.
While the basic process of electropolishing niobium with 1:9 HF:H2SO4 electrolyte has been well characterized, the specific process parameters used to electropolish different superconducting radio frequency (SRF) cavity geometries requires thoughtful attention. One seeks to realize confidently local diffusion-limited polishing at each point on the surface while maximizing uniformity of removal rate. Since the reaction rate is temperature dependent, this implies that one must manage the cavity surface temperature during polishing. Too-high applied voltage aggravates temperature and thus removal non-uniformity, but too-low applied voltage risks placing the large-diameter locations "off the current plateau," yielding etching rather than polishing. The majority of recent experience has been with elliptical L-band SRF cavities and some half-wave cavities at ANL. Lower frequency cavities with increased surface area and larger cathode-to-equator distance require fresh analysis and optimization. In preparation for SNS PPU project, JLab performed some EP process development runs with SNS high beta cavities to help identify viable parameter regimes for communication to cavity vendors. Results from this study are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP029  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP030 Automation of Particulate Characterization 477
 
  • J.K. Spradlin, C.E. Reece, O. Trofimova, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: Notice: This manuscript has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy.
Foreign particles residing on the field carrying surface of accelerator cavities are a known mechanism for field emission. Developing the methods and tools for collecting and characterizing particles found in an accelerator enables process development towards field emission free SRF cavities. Methods are presented for sampling assemblies, components, processes, and environmental conditions utilizing forensic techniques with specialized tooling. Sampling activities to date have produced an inventory of over 850 GSR spindles. Traditional SEM + EDS analysis of this volume of spindles is challenged by labor investment, spindle sampling methods, and the subsequent data pipeline which ultimately results in a statically inadequate dataset for any particulate distribution characterization. A complete systematic analysis of the spindles is enabled by third party software controlling SEM automation for EDS data acquisition. Details of spindle creation, collection equipment, component sampling, automating particle assessment, and data analysis used to characterize samples from beamline elements in CEBAF are presented.
 
poster icon Poster TUP030 [3.257 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP030  
About • paper received ※ 21 June 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP079 Deposition of Nb3Sn Films by Multilayer Sequential Sputtering for SRF Cavity Application 637
SUSP015   use link to see paper's listing under its alternate paper code  
 
  • Md.N. Sayeed, H. Elsayed-Ali
    ODU, Norfolk, Virginia, USA
  • M.C. Burton, G.V. Eremeev, C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
  • U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Nb3Sn is considered as an alternative of Nb for SRF accelerator cavity application due to its potential to obtain higher quality factors and higher accelerating gradients at a higher operating temperature. Magnetron sputtering is one of the effective techniques that can be used to fabricate Nb3Sn on SRF cavity surface. We report on the surface properties of Nb3Sn films fabricated by sputtering multiple layers of Nb and Sn on sapphire and niobium substrates followed by annealing at 950°C for 3 h. The crystal structure, film microstructure, composition and surface roughness were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The RF performance of the Nb3Sn coated Nb substrates were measured by a surface impedance characterization system. We also report on the design of a multilayer sputter deposition system to coat a single-cell SRF cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP079  
About • paper received ※ 22 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEB2 Identifying Specific Cryomodule and Cleanroom Particulate Contamination: Understanding Legacy Issues and Providing New Feedback Standards 758
 
  • C.E. Reece, J.K. Spradlin, O. Trofimova, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
While the techniques used to provide "UHV clean" and "particle-free" beamline components, including SRF cavities, continue to evolve, "real-world" operating machines must deal with actual accumulated and latent contamination issues that produce non-trivial cryogenic heatload, radiation, activation, and degradation via field emission. We have developed a standardized and automated particulate contamination assay method for use in characterizing particulates found on beamline components and in cleanroom assembly environments. We present results from using this system to analyze samples taken from reworked cryomodules from CEBAF. Particle sizes are much larger than anticipated. Utility for feedback on sources to enable improved source reduction is explored.
 
slides icon Slides WETEB2 [13.320 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEB2  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THFUA3
Material and Superconducting Properties of NbTiN/AlN Multilayer Films  
 
  • A-M. Valente-Feliciano, D.R. Beverstock, C.E. Reece
    JLab, Newport News, Virginia, USA
  • C.Z. Antoine
    CEA-DRF-IRFU, France
  • S. Keckert, O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DARPA-BAA MIPR No. HD0011728910
In the pursuit of increasing the range of surface magnetic fields sustainable in SRF cavities, new standards in quality of thin multi-layer superconductor/insulator/superconductor (SIS) structures are being achieved. With the synergistic development of multilayered metamaterials based on 3 to 1 nm NbTiN and AlN films, the interface between films is improved. Based on bulk film values, the maximum magnetic field contour plot is also established for NbTiN to guide the choice of each layer thickness and quickly converge to optimized SIS structures. The delayed DC flux entry is measured for standalone NbTiN films and multilayer stacked structures on ideal substrates and Nb substrates. Some SIS structures along with standalone NbTiN films have been deposited on Nb and their superconducting properties and RF surface impedance are evaluated.
 
slides icon Slides THFUA3 [28.515 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THFUA6 Nb3Sn Films for SRF Cavities: Genesis and RF Properties 810
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • J.W. Angle, M.J. Kelley, J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Partially authored by Jefferson Science Associates under contract no. DE¬AC05¬06OR23177. Supported by Office of High Energy Physics under grants DE-SC-0014475 to the College of William and DE-SC-0018918 to Virginia Tech.
Understanding of Nb3Sn nucleation and growth is essential to the progress with Nb3Sn vapor diffusion coatings of SRF cavities. Samples representing different stages of Nb3Sn formation have been produced and examined to elucidate the effects of nucleation, growth, process conditions, and impurities. Nb3Sn films from few hundreds of nm up to ~15 µm were grown and characterized using AFM, SEM/EDS, XPS, EBSD, SIMS, and SAM. Microscopic examinations of samples suggest the mechanisms behind Nb3Sn thin film nucleation and growth. RF measurements of coated cavities were combined with material characterization of witness samples to adapt the coating process in "Siemens" coating configuration. Understanding obtained from sample studies, applied to cavities, resulted in Nb3Sn cavity with quality factor 2 ×1010 at 15 MV/m accelerating gradient at 4 K, without "Wuppertal" Q-slope. We discuss the genesis of the Nb3Sn thin film in a typical tin vapor diffusion process, and its consequences to the coating of SRF cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THFUA6  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THFUB2 Progress with Nb Hipims Films on 1.3 GHz Cu Cavities 823
 
  • M.C. Burton, A.D. Palczewski, C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In recent years, efforts have been invested to leverage the different processes involved in energetic condensation to tailor Nb film growth in sequential steps. The resulting Nb/Cu films display high quality material properties and show promise of high RF performance. The lessons learned are now applied to 1.3 GHz Nb on Cu cavity deposition via high power impulse magnetron sputtering (HiPIMS). RF performance is measured at different temperatures. Particular attention is given to the effect of cooldown and sensitivity to external applied magnetic fields. The results are evaluated in light of the Nb film material and superconducting properties measured with various microscopy and magnetometry techniques in order to better understand the contributing factors to the residual and flux induced surface resistances. This contribution presents the insights gained in exploiting energetic condensation as a path towards RF Q-slope mitigation for Nb/Cu films, correlating film material characteristics with RF performance.
 
slides icon Slides THFUB2 [7.869 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THFUB2  
About • paper received ※ 02 July 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THHT1
Maximizing Peak Surface Fields - Time Barrier vs. Surface Barrier  
 
  • H. Padamsee
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Is the limit to SRF peak surface magnetic field the DC superheating field (Hsh) or is it the time barrier to fluxoid formation (tD)? The time barrier (tD) is the time scale for order-parameter changes (pair-breaking). In the first case there exists a surface energy barrier to the penetration of fluxoids above Hc1, or above Hc. In the second case the order parameter change time scale is longer than the rf period, so fluxoids do not nucleate in the rf period. The question is key for which new materials to explore for SRF. Should we study materials with higher Hsh (Nb3Sn, MgB2, or such overlayers) or should we study materials with higher tD such as V, Ta, Sn or such overlayers?  
slides icon Slides THHT1 [10.854 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP017 Crystallographic Characterization of Nb3Sn Coatings and N-Doped Niobium via EBSD and SIMS 871
SUSP001   use link to see paper's listing under its alternate paper code  
 
  • J.W. Angle, M.J. Kelley, J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Historically, niobium has been used as the superconducting material in SRF cavities. Due the high operational costs, other materials are currently being considered. Nb3Sn coatings have been investigated over the past several decades, motivated by potentially higher operating temperatures. More recently niobium has been doped with nitrogen to improve the quality factor (Q). Currently, a need for better understanding still exists for both mechanisms. EBSD has been shown to be a viable technique to determine the crystallographic orientation and the size of the Nb3Sn grains. The EBSD maps obtained show a bimodal distribution of grain sizes with smaller Nb3Sn grains found present near the Nb3Sn/Nb interface. In addition to the Nb3Sn coatings, N-doped niobium coupons were analyzed by EBSD and found that the coupon had preferred surface orientation. The EBSD analysis was found to be vital as specific grains could be targeted in SIMS to better understand the diffusion of nitrogen with respect to crystal orientation.  
poster icon Poster THP017 [2.571 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP017  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAB1
HF-Free Bi-Polar Electropolishing for Application on Multi-Cell Elliptical Cavities  
 
  • H. Tian, M. Lester, J. Musson, H.L. Phillips, C.E. Reece
    JLab, Newport News, Virginia, USA
  • T.D. Hall, M.E. Inman, R. Radhakrishnan, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC0506OR23177
Pulse reversed electropolishing of niobium SRF cavities, using a dilute aqueous H2SO4 electrolyte without HF yields equivalent RF performance with traditional EP. A pulse reversed electropolishing (BPEP) system has been implemented at Jefferson lab, and applied to single cells, a 7-cell CEBAF C100 cavity, and to 9-cell TESLA-style cavities with upgraded pulse system recently. A systematically mechanistic characterization and understanding of the BPEP process through bench top coupons study and cavities directs a system and operational parameter refinement for BPEP. We present process parameters, removal characterization, and rf performance of the processed cavities. This is the fruit of collaborative work between Jefferson Lab and Faraday Technology, Inc., directed toward the routine commercialization/industrialization of niobium cavity processing.
 
slides icon Slides FRCAB1 [4.394 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)