Paper | Title | Page |
---|---|---|
MOP051 | 3.9 GHz SRF Production Cavities for LCLS-II | 173 |
|
||
Funding: This work was supported by the US DOE and the LCLS-II Project. The main part of the SRF linac for the Linac Coherent Light Source II (LCLS-II) at SLAC will consist of 35 cryomodules with superconducting RF cavities operating at 1.3 GHz. In addition, two cryomodules with 3.9 GHz cavities will be installed and help to linearize the longitudinal phase space of the beam. During the design verification phase, four prototype 9-cell 3.9 GHz cavities had been built by industry and then processed, including chemical surface removal and heat treatment, and tested at Fermi National Accelerator Laboratory. Based on the resulting cavity treatment recipe, 24 cavities (for two cryomodules to be installed in the linac and one spare cryomodule) have been built by industry and tested at Fermilab prior to cryomodule string assembly. We present an overview of the cavity production and the results of the vertical acceptance tests for the LCLS-II 3.9 GHz cavities. |
||
![]() |
Poster MOP051 [1.015 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP051 | |
About • | paper received ※ 02 July 2019 paper accepted ※ 03 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP066 | New Design of SSR2 Spoke Cavity for PIP II SRF Linac | 600 |
|
||
Funding: US Department of Energy Superconducting SSR2 spoke cavities provide acceleration of the H− in PIP II SRF linac from 35 to 185 MeV. The RF and mechanical design of the SSR2 cavities has been completed and satisfies the technical requirements. However, our resent results of the high RF power tests of fully dressed SSR1 cavities show considerably strong multipacting (MP), which took significant time to process. On the other hand, the new results of the tests of balloon cavity showed significant mitigation of MP. In this paper we present the results of the improved design of the SSR2 cavity, based on the balloon cavity concept. The electromagnetic design is presented, including RF parameter optimization, MP simulations, field asymmetry analysis, High Order Mode (HOM) calculations. Mechanical analysis of the dressed cavity is presented also, which includes Lorentz Force Detuning optimization, and reduction of the cavity resonance frequency sensitivity versus He pressure fluctuations. The design completely satisfies the PIP II technical requirements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP066 | |
About • | paper received ※ 21 June 2019 paper accepted ※ 01 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP083 | Performance of the 650 MHz SRF Cavity Tuner for PIP II Project | 652 |
|
||
The PIP-II linac will include fifty seven 650MHz SRF cavities. Each cavity will be equipped with tuner for coarse and fine frequency tuning. Design and operations parameters will be discussed. Results from room temperature tests with prototype tuner installed on a 650MHz ¿G=0.90 elliptical cavity will be presented. | ||
![]() |
Poster TUP083 [1.567 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP083 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP085 | Operation of an SRF Cavity Tuner Submerged into Liquid He | 660 |
|
||
To precisely control the resonance of 1.3 GHz SRF cavities during testing at the FNAL’s Vertical Test Facility, we install for the first time a double lever tuner and operate it when submerged into the liquid He bath. Both active components of the tuner: electromechanical actuator (stepper motor) and piezo-actuators are operated inside superfluid helium. Accuracy in controlling the SRF cavity resonance frequency will be presented. Specifics of the tuner operation when submerged into liquid He will be discussed. | ||
![]() |
Poster TUP085 [2.164 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP085 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRCAA3 | Industrial Cavity Production: Lessons Learned to Push the Boundaries of Nitrogen-Doping | 1199 |
|
||
Funding: Work supported by US DOE Contract DE-AC02-76SF00515. Nitrogen doping has been proven now in several labs to enhance Q0 values of 1.3 GHz cavities in the gradient domain favored by CW operation. The choice of doping for the LCLS-II project has given the community a wealth of statistics and experience on the challenge of transferring the doping technology to industry. Overall, industry-produced nitrogen-doped cavities have shown excellent performance, however some technical issues have arisen. This talk focuses on lessons learned from the production of over 300 nitrogen-doped cavities for LCLS-II and how issues were mitigated to further improve performance. Finally, I will discuss pushing the boundaries of nitrogen-doping further by exploring different doping regimes in order to maintain excellent Q0 performance, while reaching higher quench fields. |
||
![]() |
Slides FRCAA3 [16.880 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAA3 | |
About • | paper received ※ 02 July 2019 paper accepted ※ 03 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |