Author: Devanz, G.
Paper Title Page
MOP086 Conditioning of the First Mass Production Power Couplers for the ESS Elliptical Cavities 288
 
  • C. Arcambal, M. Baudrier, P. Bosland, G. Devanz, T. Hamelin, C. Marchand, M. Oublaid, G. Perreu, S. Regnaud, C. Servouin, C. Simon
    CEA-DRF-IRFU, France
  • G. Monnereau
    CEA-IRFU, Gif-sur-Yvette, France
 
  In the framework of the European Spallation Source (ESS), CEA Paris-Saclay is in charge of the delivery of 9 medium beta (β = 0.67) and 21 high beta (β = 0.86) cryomodules. Each cryomodule is composed of 4 cavities equipped with RF (Radio Frequency) power couplers (704.42 MHz, 1.1 MW maximum peak power, repetition rate=14 Hz, RF pulse width > 3.1 ms). Ten prototype power couplers have been manufactured to validate the design and the performance. Currently the mass production of the 120 couplers started and the six first pre-series medium beta couplers have been successfully conditioned. The achievement of this milestone allowed us to launch the production of the remaining 30 medium beta couplers. This paper presents the conditioning of the pre-series couplers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP086  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP087 IFMIF Resonators Development and Performance 293
 
  • G. Devanz, M. Baudrier, P. Carbonnier, F. Éozénou, E. Fayette, D. Roudier, P. Sahuquet, C. Servouin
    CEA-DRF-IRFU, France
  • N. Bazin, S. Chel, L. Maurice
    CEA-IRFU, Gif-sur-Yvette, France
 
  The prototype IFMIF cryomodule encloses eight superconducting 175 MHz beta 0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. One prototype HWR and the 8 cavities to be hosted in the cryomodule have been manufactured, prepared and tested. The paper describes the phases of the cavities development, including fabrication, processing, and RF resonant frequency management. We focus on the results of the RF tests which have been performed for all bare and jacketed HWRs in a vertical cryostat.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP087  
About • paper received ※ 23 June 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP097 Preliminary Design of the IFMIF-DONES Superconducting Linac 311
 
  • T. Plomion, N. Bazin, N. Chauvin, G. Devanz, J. Plouin, K. Romieu
    CEA-DRF-IRFU, France
  • S. Chel
    CEA-IRFU, Gif-sur-Yvette, France
 
  The linear accelerator for the DONES facility (DEMO oriented neutron source) will serve as a neutron source for the assessment of materials damage in future fusion reactors. The DONES accelerator, which is based on the design of LIPac (Linear IFMIF Prototype Accelerator, which is under construction in Rokkasho, Japan) will accelerate deuterons from 100 keV up to 40 MeV at full CW current of 125 mA. This paper will present the preliminary design of the superconducting linac which is based on five cryomodules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP097  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEA3 Status of the IFMIF/EVEDA Superconducting Linac 735
 
  • N. Bazin, G. Devanz, H. Jenhani, O. Piquet
    CEA-DRF-IRFU, France
  • S. Chel
    CEA-IRFU, Gif-sur-Yvette, France
  • T. Ebisawa
    QST, Aomori, Japan
  • G. Phillips
    F4E, Germany
  • D. Regidor, F. Toral
    CIEMAT, Madrid, Spain
 
  The IFMIF accelerator aims to provide an accelerator-based D-Li neutron source to produce high intensity high energy neutron flux to test samples as possible candidate materials to a full lifetime of fusion energy reactors. A prototype of the low energy part of the accelerator (LIPAc) is under construction at Rokkasho Fusion Institute in Japan. It includes one cryomodule containing 8 half-wave resonators (HWR) operating at 175 MHz and eight focusing solenoids. The talk will cover the progress of developments in the IFMIF/EVEDA cryomodule: the qualification of 8 cavities, the RF conditioning results of 8 high-power couplers, the manufacturing and test of the 8 superconducting solenoids and the equivalent operational equivalent tests performed at Saclay. The assembling status of the cryomodule at Rokkasho site will also be presented.  
slides icon Slides WETEA3 [11.091 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA3  
About • paper received ※ 20 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP053 Analysis of the Results of the Tests of IFMIF Accelerating Units 992
 
  • N. Bazin, S. Chel, M. Desmons, G. Devanz, H. Jenhani, O. Piquet
    CEA-DRF-IRFU, France
 
  The prototype IFMIF-EVEDA cryomodule encloses eight superconducting 175 MHz β=0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. Two cavity packages, complete with tuning system and power couplers, have been tested in a dedicated horizontal test cryostat - SaTHoRI (Satellite de Tests HOrizontal des Résonateurs IFMIF). The successful operational equivalent tests and tuning of the SRF accelerating units is reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP053  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP096 ESS Prototype Cavities Developed at CEA Saclay 1143
 
  • E. Cenni
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, P. Carbonnier, G. Devanz, X. Hanus, L. Maurice, J. Plouin, D. Roudier, P. Sahuquet
    CEA-DRF-IRFU, France
 
  The ESS elliptical superconducting Linac consists of two types of 704.42 MHz cavities, medium and high beta, to accelerate the beam from 216 MeV up to the final energy at 2 GeV. The medium and high-beta parts of the Linac are composed of 36 and 84 elliptical cavities, with geometrical beta values of 0.67 and 0.86 respectively. CEA Saclay is in charge of the cavity prototypes that is designing, manufacturing, testing and integrating them into demonstrator cryomodules. We have manufactured 6 medium beta and 5 high beta cavities and we present here the latest results concerning these activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP096  
About • paper received ※ 22 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP097 Field Emission Studies on ESS Elliptical Prototype Cavities at CEA Saclay 1147
 
  • E. Cenni, M. Baudrier, G. Devanz, L. Maurice, O. Piquet, D. Roudier
    CEA-DRF-IRFU, France
 
  CEA Saclay is in charge of the cavity prototypes that is designing, manufacturing, testing and integrating them into demonstrator cryomodules. We have manufactured 6 medium beta and 5 high beta cavities. As part of these activities we are interested in field emission as one of the limiting factors for cavity performances. We are currently collecting data from cavities operated in vertical cryostat and inside cryomodules. Analysis are carried out by means of particle tracking simulation and comparison with radiation dose monitor and scintillators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP097  
About • paper received ※ 27 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEA1
ESS Technology Development at IPNO and CEA Paris-Saclay  
 
  • G. Devanz
    CEA-IRFU, Gif-sur-Yvette, France
 
  The French In-kind contribution to the superconducting linac of the European Spallation Source ESS consists in the development from design to delivery of the thirteen spoke cryomodules by CNRS IPN Orsay and of the nine medium beta and twenty-one high beta elliptical cavity cryomodules by CEA Paris-Saclay. Recently, prototype cryomodules serving the purpose of demontrating the chosen technology, one for spokes, one for medium beta ellipticals have been built and tested, with additional contributions of Uppsala University and INFN Lasa. The component design and performance in the recent cryomodule tests at 2 K are presented, as well as the individual testing activities of pre-series and series components.  
slides icon Slides WETEA1 [7.235 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)