Paper | Title | Page |
---|---|---|
MOXA07 | Development of the C-ADS SRF Accelerator at IHEP | 19 |
|
||
Funding: CAS Strategic Priority Research Program-Future Advanced Nuclear Fission Energy (Accelerator-Driven Sub-critical System) and National Natural Science Foundation of China, under contract NO. 11405190 The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The ion source was installed since April of 2014, periods of commissioning are regularly scheduled between installation phases of the rest of the injector. Early this year, continuous wave (CW) proton beam has been successfully obtained with energy of 10MeV and average beam current around 2 mA, the single spoke cavities with smallest developed beta (βg=0.12) were applied and successfully commissioned. Single spoke cavities with higher beta (βg=0.21) were also adopted for the last cryomodule of 25MeV proton linac, and 170uA CW proton beam were shooting through recently. This contribution reports the details of the development of the C-ADS SRF accelerator at IHEP and the challenges of the CW machine commissioning |
||
![]() |
Slides MOXA07 [5.605 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOXA07 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB099 | Design of C-ADS Injector-I Cryomodule for 325MHz Cavities | 294 |
|
||
Funding: Supported by Strategic Priority Research Program of CAS (XDA030213) The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB099 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |