Author: Keckert, S.
Paper Title Page
THPB052 Error Analysis of Surface Resistance Fits to Experimental Data 859
 
  • S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
 
  Funding: This work is part of EuCARD-2, partly funded by the European Commission, GA 312453.
Superconducting material properties such as energy gap, mean free path or residual resistance are commonly extracted by fitting experimental surface resistance data. Depending on the measurement setup, both, temperature range and the number of points are limited. In order to obtain significant results, systematic as well as statistical uncertainties have to be taken into account. In this contribution different classes of errors and their impact on systematic and statistical deviations of the fitted parameters are discussed. In particular, past measurements have yielded contradictory conclusions that, we believe, result from the use of insufficient data in the necessary temperature range. Furthermore, this study is applied to the boundary conditions of the Quadrupole Resonator and its measurement accuracy.
 
poster icon Poster THPB052 [1.034 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-THPB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPB053 Surface Resistance Characterization of Nb3Sn Using the HZB Quadrupole Resonator 863
 
  • S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
  • D.L. Hall, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is part of EuCARD-2, partly funded by the European Commission, GA 312453.
Nb3Sn is a very promising candidate material for future SRF cavities. With a critical temperature more than twice as the one of bulk niobium, higher operational temperatures with still lower surface resistance are theoretically possible. A sample prepared by Cornell University was characterized towards its SRF properties using the HZB Quadrupole Resonator. In comparison to a coated cavity this device enables SRF measurements at an extended parameter space (frequency, temperature and RF field) and easy access to physical quantities such as critical field and penetration depth. In this contribution we present surface resistance and RF critical field measurements.
 
poster icon Poster THPB053 [2.725 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-THPB053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPB054 Advanced Method to Extract the Surface Resistance From Q0 Measurements 867
 
  • R. Kleindienst, S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD-2, grant agreement No. 312453.
The quality factor of an RF cavity and the surface resistance are typically related with a constant geometry factor. The implicit assumption made is that the surface resistance is field independent, which is however not observed experimentally in superconducting cavities. The approximation error due to this assumption becomes larger the less homogeneous the magnetic field distribution along the cavity walls is. In this paper we calculate the surface resistance error for different cavity types. An iterative method to correct for this error is presented.
 
poster icon Poster THPB054 [0.196 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-THPB054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)