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Abstract

The quality factor of an RF cavity and the surface resistance are typically related with a constant geometry factor. The implicit assumption made is that the surface resistance is field
independent, which is however not observed experimentally in superconducting cavities. The approximation error due to this assumption becomes larger the less homogeneous the magnetic
field distribution along the cavity walls is. In this paper we calculate the surface resistance error for different cavity types. Correction factors as well as a numerical method to correct for
this error are presented.

Introduction

The quality factorQ0 of an RF cavity relates the stored energyU with the energy dissipated
per RF cycle. It is calculated by:

Q0 =
ωU

P
Dis

=
ω
∫

V
|B|2 dv

µ0

∫
S
R

S
· |B|2 ds

≈ G

R
S

(1)

where P
Dis

is the dissipated power and R
S

is the surface resistance. In the last term, the
geometry factor G is introduced which directly links the quality factor with the surface
resistance. This factor is independent of the material and of the size of the cavity and is
calculated with:

G =
ω
∫
V |B|

2 · dv
µ0

∫
S
|B|2 · ds

(2)

Calculating R
meas

S
= G/Q0 will return a mean surface resistance, which is only identical

to the local material surface resistance R
S
(B) if it is field independent or if the field

distribution on the cavity surface is uniform. The less homogenous the surface magnetic
field is distributed, the larger the approximation error becomes. This effect is shown in
Figures 1, where the hypothetically measured surface resistance R

meas

S
is shown for various

different cavity types.
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Fig. 1: Hypothetical measurement of the same material with different cavities. Shown in the dotted black line is the assumed

surface resistance which has a quadratic and an exponential contribution. For cavities types with very inhomogenous surface

magnetic fields, the error when calculating the surface resistance as R
meas

S
= G/Q0 can be as large as 30%.

Correction Factors

So how does one correct for this problem? If one assumes a polynomial dependence of

the surface resistance (R
S
(B) = R0 +

∞∑
i=1

αiB
i) one can explicitly calculate the correction

factors for each coefficient [1]:
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∞∑
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∫
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∞∑
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(3)

The correction factors for the selected cavities are shown in Table 2. Calculating a cor-
rection factor does not work however if the surface resistance is exponential or of a other,
non-polynomial form.

β1 β2 β3

TESLA Cavity 0.91 0.85 0.80

ERL Cavity 0.97 0.95 0.93

Half Wave Resonator 0.74 0.58 0.48

TE011 Host Cavity 0.84 0.74 0.67

Quadrupole Resonator 0.72 0.58 0.48

Fig. 2: Correction factors βi, calculated with Equation 3 for several cavity types.

Numerical Method

Starting with the naive calculation of the surface resistance (R
S,0

= G/Q0), an expected
quality factor is calculated, using Equation 1 and a exlicit calculation of the dissipated
power P

Dis
. A field dependent geometry factor is then computed and the surface resistance

results are updated. The updated results are used to compute a new geometry factor, and
so on.

R
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(4)

Note that as the measurement data Q0(B) is discrete, one has to interpolate the inter-
medeate surface resistance results R

S,i
to be able to calculate the expected quality factor

at each iteration. The application of these update rules is shown in Figure 3, using as
an example the half wave resonator, modeled as coaxial transmission line shorted at both
ends [2], and the same surface resistance functions as assumed previously. One can see
that the algorithm converges towards the correct result within a few iterations.
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Fig. 3: Correction calculation for a Half Wave Resonator assuming a monotonically increasing surface

resistance as used in Figure 1. The black dotted line indicates the ’true’ surface resistance, the result

obtained using a constant geometry factor is shown in red . After only a few iterations, the calculation

converges towards the correct result.

Conclusion

We have shown that the approximation error caused by calculating the surface resistance
directly from the geometry factor can be very significant for realistic scenarios. If the
surface resistance follows a polynomial function, one can pre-compute correction factors.
Furthermore a simple method was introduced that correctly calculates the surface resis-
tance from Q0-data without making assumptions about the underlying loss model.
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