

ERROR ANALYSIS OF SURFACE RESISTANCE FITS TO EXPERIMENTAL DATA

ABSTRACT: Superconducting material properties such as energy gap, mean free path or residual resistance are commonly extracted by fitting experimental surface resistance data. Depending on the measurement setup, both, temperature range and the number of points are limited. In order to obtain significant results, systematic as well as statistical uncertainties have to be taken into account.

In this contribution we discuss the impact of systematic and statistical errors on BCS fit parameters. In particular, past measurements have yielded contradictory conclusions that, we believe, result from the use of insufficient data in the necessary temperature range. Furthermore, this study is applied to the boundary conditions of the Quadrupole Resonator and its measurement accuracy.

SYSTEMATIC ERRORS

ERRORS ON dB SCALE

RF power is typically measured in units of dBm. The conversion from dBm to Watts if given by

 $P[W] = 10^{\frac{P[dBm] - 30}{10}}$

An offset of x dBm leads to

$$P_{\text{err}}[W] = 10^{\frac{P[dBm] + x - 30}{10}} = P[W] \times 10^{\frac{x}{10}}$$

Looking at the relative error

$$\frac{P_{\rm err} - P}{P} = 10^{\frac{x}{10}} - 2$$

 \Rightarrow independent of the actual measurement. Linear approximation for small values of x

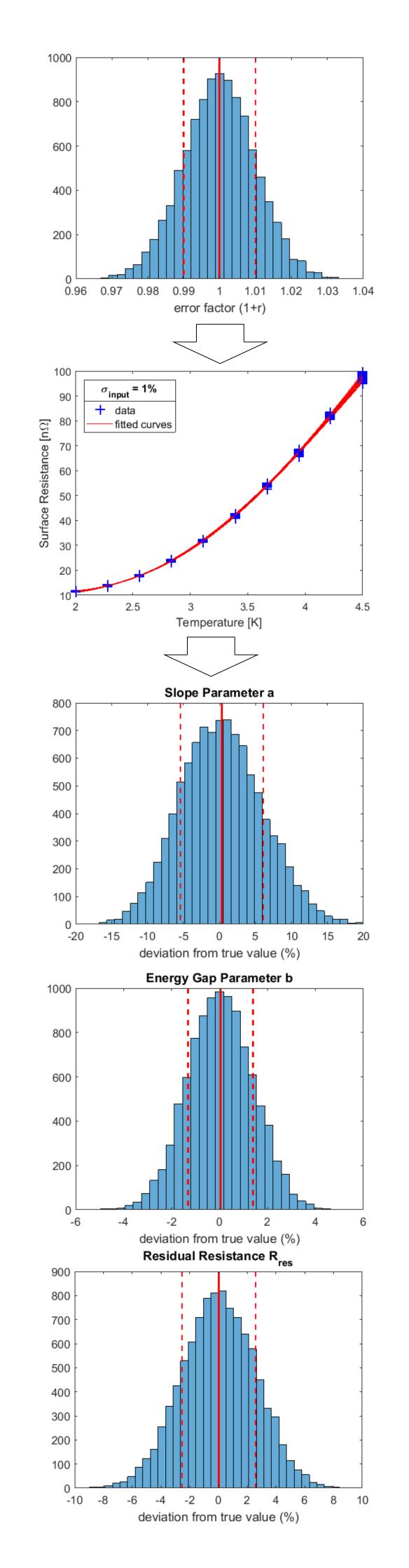
 $\frac{\partial}{\partial P_{\text{err}} - P} = \frac{\ln(10)}{2}$

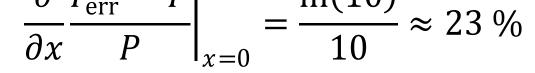
STATISTICAL UNCERTAINTIES

1) Generate 10,000 surface resistance data sets

 $R_s(T) = \frac{af^2}{T} \exp\left(-b\frac{T_c}{T}\right) + R_{\text{res}}$

f	а	b	T _c	R _{res}
1 GHz	$2\times 10^4 \frac{n\Omega K}{GHz^2}$	1.91	9.25 K	10 nΩ


2) Multiply surface resistance with random error $R_s(T) \rightarrow R_s(T) \times (1+r)$


3) compute BCS fit

 \Rightarrow statistical uncertainty of fit parameter from standard deviation

Error amplification factor α

 σ of fit parameter / true value of fit parameter

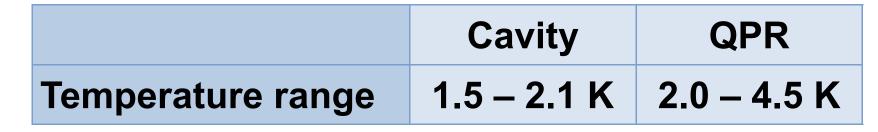
 \Rightarrow constant relative error: 2.3 % per 0.1 dB offset

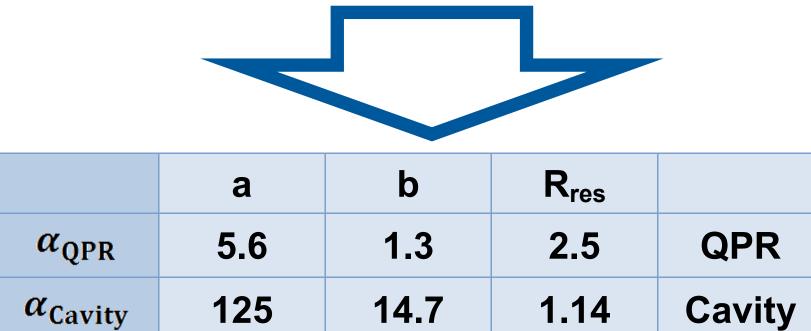
IMPACT ON BCS PARAMETERS

In General: constant relative error β

- \Rightarrow multiplation of R_s with β
- \Rightarrow affects only a and R_{res}
- \Rightarrow applicable to all multiplicative formulas
- \Rightarrow good approximation for QPR and cavity tests

CONCLUSIONS

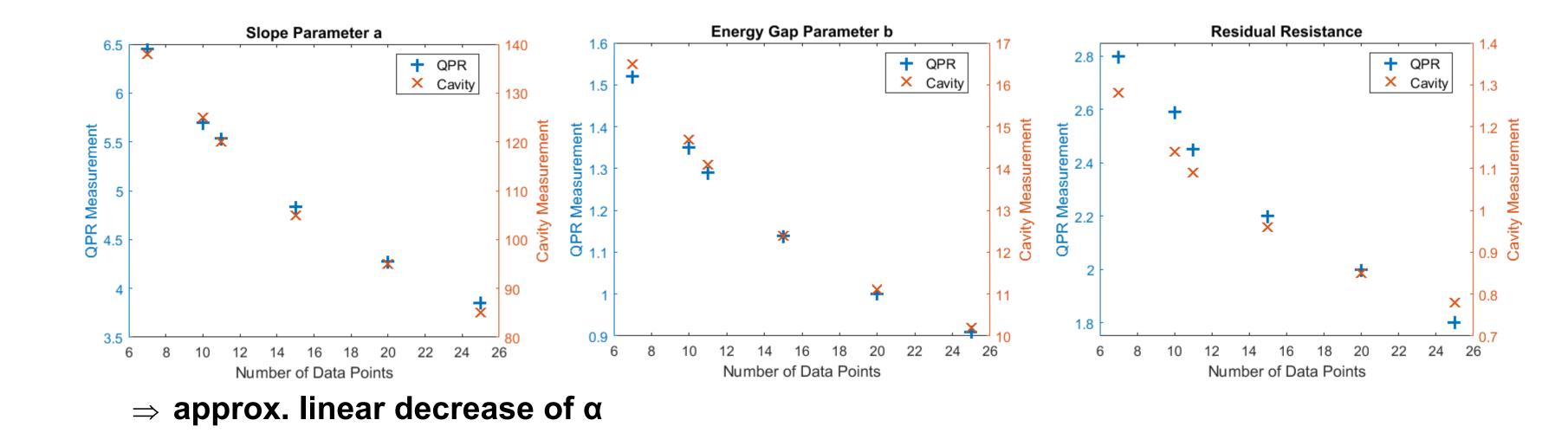

Systematic errors


 \Rightarrow on dB level \Rightarrow constant relative error 2.3 % per 0.1 dB

$\alpha = \frac{1}{\sigma \text{ of input random error}}$

MEASUREMENT SCENARIOS

Number of meas. points	10
RMS error surface resistance	1 %


- \Rightarrow Error amplification factor α > 1
- ⇒ Temperature range below 2.1 K not sufficient

NUMBER OF DATA POINTS

 \Rightarrow constant relative errors only affect parameters a and R_{res}

Statistical uncertainties

- \Rightarrow Impact depends on temperature range of fit
- \Rightarrow Error amplification factor α independent of input error
- \Rightarrow Linear decrease of α with increasing number of data points
- \Rightarrow 1.5 2.1 K \Rightarrow only R_{res} has sufficient accuracy
- \Rightarrow 2.0 4.5 K $\Rightarrow \alpha$ > 1 but acceptable for all fit parameters

CAPACITIES

References

- [1] H. Padamsee, "RF Superconductivity: Science, Technology and Applications", Wiley-VCH, Weinheim, 2009.
- [2] J. Halbritter, "FORTRAN-Program for the computation of the Surface Impedance of Superconductors", KFK-EXT 3/70-6, Karlsruhe, 1970.
- [3] E. Mahner, S. Calatroni, E. Chiaveri, E. Haebel and J. M. Tessier, Rev. Sci. Instrum. 74, 3390 (2003).

Sebastian Keckert

sebastian.keckert@helmholtz-berlin.de +49-30-8062-12922

