Paper | Title | Other Keywords | Page |
---|---|---|---|
MOP037 | Muon Ionization Cooling Experiment: Controls and Monitoring | controls, monitoring, emittance, target | 166 |
|
|||
Funding: NSF The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the viability of cooling a beam of muons for use in a Neutrino Factory and Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, we intend to measure the beam emittance before and after the cooling channel at the level of 1%, or an absolute measurement of 0.001. This renders MICE as a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, detector, environment, and data monitoring systems. A description of this system, its implementation, and performance during recent muon beam data collection will be discussed. |
|||
MOP165 | Bringing Accelerator Models to the Control System Studio | controls, optics, booster, status | 403 |
|
|||
This paper is the next logical step in the evolution of the new EPICS-based high-level accelerator application environment. The project presents the connection of its middle layers servers with the new Eclipse-based operational toolkit, Control System Studio. The approach is illustrated by the implementation of the Model Independent Analysis application involving three key servers: Machine, Online Model, and Virtual Accelerator. | |||
MOP198 | BPM Inputs to Physics Applications at NSLS-II | feedback, controls, alignment, diagnostics | 465 |
|
|||
A new BPM (Beam Position Monitor) electronics is under development and in good progress at NSLS-II. This in-house BPM receiver with many new features is comparable to commercial solution. BPM data for fast orbit feedback (FOFB) is one of the most important physics applications. The procedure to use BPM for FOFB is introduced firstly. Then, different BPM data flows associated with different physics requirements and applications are discussed. And control implementation of BPM system for physics applications is presented. | |||
MOP211 | NSLS-II RF Beam Position Monitor | controls, feedback, injection, storage-ring | 495 |
|
|||
Funding: Work supported by the U.S. DOE under contract No. DE-AC02-98CH10886. An internal R&D program has been undertaken at BNL to develop a sub-micron RF Beam Position Monitor (BPM) for the NSLS-II 3rd generation light source that is currently under construction. The BPM R&D program started in August 2009. Successful beam tests were conducted 15 months from the start of the program. The NSLS-II RF BPM has been designed to meet all requirements for the NSLS-II Injection system and Storage Ring. Housing of the RF BPMs in ±0.1C thermally controlled racks provide sub-micron stabilization without active correction. An active pilot-tone has been incorporated to aid long-term (8hr min) stabilization to 200nm RMS. |
|||
MOP233 | LANSCE-R Wire-scanner System | controls, diagnostics | 545 |
|
|||
Funding: US Department of Energy The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wire-scanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sense-wire interface with variable DC wire bias and wire-integrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel. |
|||
MOP250 | NSLS-II High Level Application Infrastructure and Client API Design | controls, quadrupole, emittance, monitoring | 582 |
|
|||
Funding: Work performed under auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. It is an open structure platform, and we try to provide a narrow API set for client application. With this narrow API, existing applications developed in different language under different architecture could be ported to our platform with small modification. This paper describes a detailed client API design, and latest progress. |
|||
MOP252 | Server Development for NSLS-II Physics Applications and Performance Analysis | controls, emittance, synchrotron, synchrotron-radiation | 585 |
|
|||
Funding: Work performed under auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. The server development is ongoing, and adopts a sourceforge open project so-called epics-pvdata, which consists of pvData, pvAccess, pvEngine, and pvService. Some services have being demonstrated as one service under pvService module such as itemFinder service, gather service, and lattice manager, and each service runs as one standalone server using pvData to store in-memory transient data, pvService to transfer data over network, and pvEngine as service engine. This paper describes a detailed development, latest progress, and performance analysis. |
|||
MOP256 | Upgrading the Data Acquisition and Control System of the LANSCE LINAC | controls, linac, proton, neutron | 588 |
|
|||
Funding: This work has benefited from the use of the LANSCE at LANL. This facility is funded by the US DOE and operated by LANS for NSSA under Contract DE-AC52-06NA25396. Los Alamos National Laboratory LANL is in the process of upgrading the control system for the Los Alamos Neutron Science Center (LANSCE) linear accelerator. The 38 year-old data acquisition and control equipment is being replaced with COTS hardware. An overview of the current system requirements and how the National Instruments cRIO system meets these requirements will be given, as well as an update on the installation and operation of a prototype system in the LANSCE LINAC. LANL Release Number: LA-UR 10-06605 |
|||
MOP300 | The Spallation Neutron Source Eight-Channel Pulsed Power Meter | controls, monitoring, klystron, LLRF | 684 |
|
|||
The Spallation Neutron Source (SNS) Low Level Radio Frequency (LLRF) Control System currently utilizes the High-Power Protection Module (HPM) to monitor RF power levels, arc faults, and associated signals for the protection of the RF systems and accelerating cavities. The HPM is limited to seven RF channels for monitoring signals which in some instances leaves some signals of interest unmonitored. In addition, the HPM does not support monitoring of RF frequencies below 100 MHz which makes it unusable for our Ring and Ion Source systems that operate at 1 and 2 MHz respectively. To alleviate this problem, we have developed a microprocessor based eight channel pulsed RF power meter that allows us to monitor additional channels between the frequency range of 1 MHz to 2.5 GHz. This meter has been field tested in several locations with good results and plans are in place for a wider deployment. | |||
TUP267 | LANSCE Drift Tube Linac Water Control System Refurbishment | controls, linac, drift-tube-linac, monitoring | 1319 |
|
|||
Funding: Funding Agency: Work performed under the auspices of the U.S. Department of Energy, under contract DE-AC52-06NA25396. There are several refurbishment projects underway at the Los Alamos National Laboratory LANSCE linear accelerator. Systems involved are: RF, water cooling, networks, diagnostics, timing, controls, etc. The Drift Tube Linac (DTL) portion of the accelerator consists of four DTL tanks, each with three independent water control systems. The systems are about 40 years old, use outdated and non-replaceable equipment and NIM bin control modules, are beyond their design life and provide unstable temperature control. Insufficient instrumentation and documentation further complicate efforts at maintaining system performance. Detailed design of the replacement cooling systems is currently in progress. Previous design experience on the SNS accelerator water cooling systems will be leveraged. Plans call for replacement of water piping, manifolds, pumps, valves, mix tanks, instrumentation (flow, pressure and temperature) and control system hardware and software. This presentation will focus on the control system design with specific attention on planned use of the National Instruments Compact RIO platform with the Experimental Physics and Industrial Control System (EPICS) software toolkit. |
|||
TUP290 | Progress on MICE RFCC Module for the MICE Experiment | cavity, coupling, vacuum, controls | 1370 |
|
|||
Funding: This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231. We describe the recent progress on the design and fabrication of the RFCC (RF and Coupling Coil) module for the international Muon Ionization Cooling Experiment (MICE). The MICE cooling channel has two RFCC modules; each has four 201-MHz normal conducting RF cavities and one superconducting solenoid magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; design and fabrication of the magnets are in progress. The first magnet is expected to be finished by the end of 2011. |
|||
WEOBN3 | BOY, A Modern Graphical Operator Interface Editor and Runtime | controls, feedback, background, status | 1404 |
|
|||
Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy Taking advantage of modern graphical editor software technology, a new Operator Interface (OPI) editor and runtime - Best OPI, Yet (BOY) - was developed by the Control System Studio (CSS) collaboration. It uses the Eclipse Graphical Editor Framework (GEF) to provide modern graphical editor functions, which makes it easy and intuitive to edit OPIs. Combined with Javascript and configurable rules, it is also easy to create powerful OPIs with complicated client-side logic. By simply providing the name of a Process Variable (PV), it will automatically handle the network connections. The graphical layer is decoupled from the data connection layer, conceptually allowing BOY to connect to arbitrary data sources, with current support including EPICS Channel Access and simulation PVs. BOY is integrated with the CSS platform, which provides inter-operability with other CSS tools. Fundamentally, it could also be integrated with other Eclipse Rich Client Platform (RCP) applications due to its plugin mechanism. We have several screens deployed at the Spallation Neutron Source (SNS), where BOY has proven to be stable in support of SNS operation. |
|||
![]() |
Slides WEOBN3 [3.461 MB] | ||
WEOBN4 | Multipurpose Controller Based on a FPGA with EPICS Integration | controls, monitoring, LLRF, low-level-rf | 1407 |
|
|||
In this work a multipurpose configurable control system is presented. This controller is based on a high performance FPGA for a fast control connected to a Host PC which works as an EPICS server to allow a remote control. The communication between both parts is made by a register bank implemented in the FPGA and which is accessible by the Host PC by means of a Compact PCI bus. The initialization values, the numeric representation of the digital signals and the EPICS database are configured by an XML file. This control scheme has been prototyped for two applications: Low Level RF and Beam Position Monitoring. The former contains three digital loops to control the amplitude and phase of the RF supply and the geometry of the cavity. The latter processes the information from four capacitive buttons to calculate the position of the beam. In both systems, the necessary parameters for the digital processing of the acquired signals (using fast ADCs) and intermediate calculations are stored in the register bank connected to the cPCI bus. These systems are being developed for the ESS-Bilbao facility which will be built in Bilbao, Spain. | |||
![]() |
Slides WEOBN4 [0.621 MB] | ||
WEODN4 | NSLS-II Fast Orbit Feedback with Individual Eigenmode Compensation | feedback, controls, emittance, storage-ring | 1488 |
|
|||
This paper presents the NSLS-II fast orbit feedback system with individual eigenmode compensation. The fast orbit feedback system is a typical multiple-input and multiple-output (MIMO) system. Traditional singular value decomposition (SVD) based fast orbit feedback systems treat each eigenmode the same and the same compensation algorithm is applied to all the eigenmodes. In reality, a MIMO system will have different frequency responses for different eigenmodes and thus it is desirable to design different compensation for each eigenmode. The difficulty with this approach comes from the large amount of computation that needs to be done within the time budget of the orbit feedback system. We designed and implemented the NSLS-II fast orbit feedback (FOFB) system with individual eigenmode compensation by taking advantage of the parallel computation capability of field programmable gate array (FPGA) chips. | |||
![]() |
Slides WEODN4 [1.064 MB] | ||
THP121 | Open-source Software System for Multi-author Documents | controls | 2345 |
|
|||
Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357 An efficient means was developed to manage multi-author documents using software components not usually run together that are both freely available and free of cost: Concurrent Version Software (CVS), LaTeX typesetting software, and the Unix make utility. Together they solve the main problem with multi-author documents: losing track of "latest" version, tracking author contributions, and a strict enforcement of document format. APS has used this system for two large documents with about a dozen authors each: a 2007 white paper (150 pages) on a ERL proposal and a chapter (200 pages) of the APS Upgrade CDR. We stress the use of LaTeX because the plain-text format is amenable to version comparisons and the macro-based system allows last-minute global format changes. Several contributions from APS to this conference actually use this system. |
|||