
BOY, A MODERN GRAPHICAL OPERATOR INTERFACE EDITOR AND

RUNTIME*

Xihui Chen
#
, Kay Kasemir, ORNL, Oak Ridge, TN 37831, U.S.A

Abstract
Taking advantage of modern graphical editor software

technology, a new Operator Interface (OPI) editor and

runtime - Best OPI, Yet (BOY) [1] - has been developed

by the Control System Studio (CSS) [2] collaboration. It

uses the Eclipse Graphical Editing Framework (GEF) [3]

to provide modern graphical editor functions, which

makes it easy and intuitive to edit OPIs. With JavaScript

and configurable rules, it allows users to create OPIs with

powerful client-side logic. The graphical layer is

decoupled from the data connection layer, conceptually

allowing BOY to connect to arbitrary data sources.

Current support includes the Channel Access protocol [4]

and local process variables (PVs). BOY is integrated in

the CSS platform, which provides inter-operability with

other CSS tools. Fundamentally, it could also be

integrated with other Eclipse Rich Client Platform (RCP)

[5] applications due to its plug-in mechanism. We have

several screens deployed at the Spallation Neutron Source

(SNS), where BOY has proven to be stable in support of

SNS operation.

INTRODUCTION

The Operator Interface is one of the three basic

components of the standard control system model [6]. It

provides not only operators but also scientists and

engineers with rich graphical interfaces to view or operate

the accelerator locally or remotely. With the increasing

scale and complexity of modern accelerators and

detectors, more and more requirements are imposed on a

modern OPI editor and runtime:

 Ease of Use: A modern accelerator control system

generally has hundreds if not thousands of deployed OPI

panels. Generation of these panels should not be limited

to computer scientists. Operators and equipment

specialists require a visualized, easy to use and productive

OPI editing environment for this purpose. It should also

support the automated generation of OPI panels, for

example by scripts.

High Flexibility: As the complexity of modern

accelerators increases, so does the OPI. In addition to

reading or setting individual values, there is a need for

dynamic displays with client-side logic. In the

Experimental Physics and Industrial Control System

(EPICS) [4], this allows moving display-related logic

from the front-end controller into the OPI.

Performance: Performance is always important to

control systems, referring to smooth display updates,

delay-free operation combined with high reliability and
stability.

Manageability: To manage a large amount of OPI

panels, the tool must support a consistent use of colors,

fonts and images.

Portability: Modern distributed control systems

require access to OPI panels everywhere, at least on a

local area network. The OPI should be able to run on

different operating systems.

To meet these requirements, a modern graphical OPI

editor and runtime, the Best OPI, Yet (BOY), has been

developed at the SNS within the CSS collaboration. BOY

is an integrated environment, comprised of a web-browser

like runtime, a What You See Is What You Get

(WYSIWYG) graphical editor, and several Views to

support the editing of OPIs. Its design is based on the

experience with two existing display tools, the Synoptic

Display Studio (SDS) [7] and the Extensible Display

Manager (EDM) [8], as well as adopting many new ideas

from the EPICS community.

ARCHITECTURE

Figure 1: Architecture of BOY.

As shown in Fig. 1, BOY is a set of Eclipse plug-ins

built on the CSS platform [2] using Eclipse and Java

technology. With Java and Eclipse technology, BOY is

__

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-

00OR22725 for the U.S. Department of Energy
#chenx1@ornl.gov

WEOBN3 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1404C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Instrumentation and Controls

Tech 04: Control Systems

able to run on different operating systems without

complicated installation. The Eclipse Graphical Editing

Framework (GEF) [3] provides the basis of a modern

graphical editor. BOY combines GEF with control-system

specific code from SDS to implement an editor for OPIs.

In BOY, “Widgets” are the bricks for constructing an

OPI. Widgets have properties like color and text.

Internally, BOY widgets follow the GEF Model-View-

Controller (MVC) architecture. Widgets are included in

BOY via the Eclipse plug-in mechanism, allowing

accelerator sites can add their customized widgets.

The graphical layer of BOY uses a data connection

layer, the CSS “Utility PV” library, to connect to control

system data sources. Most widgets can dynamically

change their properties based on the value of a PV. A

“Text Update” widget for example will display the textual

value of a PV, and the border around the widget can

change depending on the alarm state of the PV. The PV

layer in turn uses the Eclipse plug-in mechanism to

connect to the actual control system. Currently, there is

support for EPICS Channel Access and local, in-memory

PVs. The latter allow for data communications between

BOY widgets or OPI panels.

To meet the high flexibility requirement, BOY can

attach rules and scripts to widgets. Based on the Rhino

JavaScript Engine [10], scripts can dynamically change

any widget property.

OPI files are stored in a well-defined XML format,

giving the possibility to automatically generate OPIs from

scripts. BOY uses JDOM [11] as XML parser.

In addition the BOY editor and runtime itself, there is

growing ecosystem. For example, the Data Browser that

interactively displays live and historic data has been

developed outside of BOY [12], but was then wrapped

into a BOY widget to offer its functionality within an

OPI. Collaborators at the Advanced Photon Source (APS)

developed an MEDM [13] to BOY converter. An EDM to

BOY converter is under development at the SNS.

BOY can be deployed as part of any Eclipse RCP

product, for example within the SNS version of CSS [14].

When integrated with CSS, it can provide inter-

operability with other CSS tools.

OPI EDITING WORKBENCH

To meet the requirement of ease of use in editing and

managing OPI files, BOY has an integrated OPI editing

workbench as shown in Fig. 2. It is comprised of a

graphical OPI editor, a JavaScript editor, a navigator

view, a properties sheet, an outline view and a console

view. These parts are arranged in a predefined

perspective, but users can customize it by dragging,

resizing or closing any of its parts.

Figure 2: OPI editing workbench.

A palette lists all widgets that can be placed on the

central OPI editor panel. The graphical editor, its toolbar

and context menus offer comprehensive editing functions

such as copy, paste, zoom in/out, group, ungroup,

alignment and snap to grid and so on. There is multi-level

undo and redo support.

Creating and editing an OPI is fairly straightforward.

For example, one can drag a “Text Update” widget from

the palette onto the editor panel, and then enter the

desired PV name in the Properties View, and that’s it.

Later, a click on a widget to select it allows changes to its

other properties in the properties sheet, such as the

foreground color, font and tooltip. One can change the

size or position of a widget by dragging and dropping. It

is possible to select multiple widgets simultaneously and

then change their shared properties at once.

The Navigator View is the place to manage OPI files.

Eclipse offers support for several software versioning

systems, and the SNS version of CSS includes the

Concurrent Versioning System (CVS) to allow storage

and retrieval of OPIs from a CVS repository.

The Outline View gives a thumbnail picture as well as a

widget tree structure of the currently edited OPI. The

console view can display warnings or error messages.

OPI RUNTIME

To the user, the runtime environment that executes

BOY OPIs is similar to a web browser (Fig. 3). OPIs can

appear in tabs, panels within one window or as separate

windows. Opening related OPIs is similar to following a

hyperlink in web browser, and users can control if the

new page will replace the current one, or appear in a new

tab or window. A page history allows navigation ‘back’ to

previously viewed pages, then to got ‘forward’ again to

the most recent page.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEOBN3

Instrumentation and Controls

Tech 04: Control Systems 1405 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 3: OPI runtime and widgets.

PV Connectivity

Based on the PV name property of a widget, the OPI

Runtime connects to the control system and updates

associated widget properties. The Meter widget for

example will by default reflect the PV’s value via its

needle, display the PV’s range and alarm limits on its

scale and ramp, and update its border based on the PV’s

alarm states and connection status.

Macros

The OPI Runtime supports macros on many levels. Any

text-base property like the PV name, tooltip and rules can

include macros. The runtime expands macros based on

parameters passed into the OPI from the command-line or

parent displays. By using macros, the same panel can be

reused for different PVs.

BOY also supports color and font macros, which can be

used to provide a consistent look by for example defining

a common “Title” font.

Rules and Scripts

Rules are configured in an interactive dialog without

requiring programming knowledge, for example to

change the background color of a widget based on a PV

value.

Script follows JavaScript grammar, but also allows

calling Java code. It offers full access to widgets, widget

properties and input PVs. For example, a script can fit a

waveform, write data to file, dynamically move a widget

or popup a warning dialog in case a value exceeds a limit.

WIDGETS

BOY currently offers 38 (Fig. 3) widgets. There are

basic graphics such as rectangle, ellipse, polyline,

polygon and image; control system widgets such as meter,

knob and XY graph; container widgets such as grouping

container, linking container, tabbed container and web

browser; as well as layout widgets that can help to

arrange widgets in a particular way.

Eclipse/Java programmers can also add customized

widgets via an extension point.

BOY AT SNS

SNS has been using several OPIs for about eight

months (Fig. 4). BOY has proven to meet the

performance requirements. It has been stable and reliable

in its support of SNS operation.

Figure 4: Screenshot of BOY OPI at SNS

ACKNOWLEDGEMENTS

We thank the original developer of EDM, John Sinclair,

and SDS developers at DESY for their inspiration. John

Hammonds developed the MEDM to BOY converter and

byte monitor widget. We thank the ITER CODAC team,

Ralph Lange and other BOY users for their active

feedback and suggestions, Matthias Clausen for

shepherding CSS, and Gabriele Carcassi, Kunal Shroff for

their effort in managing CSS on SourceForge.

REFERENCES

[1] http://sourceforge.net/apps/trac/cs-studio/wiki/BOY.

[2] http://cs-studio.sourceforge.net/.

[3] http://www.eclipse.org/gef/.

[4] http://www.aps.anl.gov/epics/.

[5] http://wiki.eclipse.org/Rich_Client_Platform.

[6] M. E. Thuot, L. R. Dalesio, Control System

Architecture: The Standard and Non-Standard

Models. IEEE, Proc. of the 1993 PAC, Volume 3, p.

 1806-1810

[7] https://sourceforge.net/apps/trac/cs-

studio/wiki/Synoptic

[8] http://ics-web.sns.ornl.gov/edm/

[9] http://www.eclipse.org/gef/draw2d/index.php

[10] http://www.mozilla.org/rhino/

[11] http://www.jdom.org/

[12] K. U. Kasemir, Control System Studio (CSS) Data

Browser, PCaPAC08, Ljubljana, Slovenia

[13] http://www.aps.anl.gov/epics/extensions/medm

[14] http://ics-web.sns.ornl.gov/css/products.html

WEOBN3 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1406C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Instrumentation and Controls

Tech 04: Control Systems

