A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Takano, J.

Paper Title Page
TPPE031 60 mA Carbon Beam Acceleration with DPIS 2206
 
  • M. Okamura, R.A. Jameson, K. Sakakibara, J. Takano
    RIKEN, Saitama
  • T. Fujimoto, S. Shibuya, T. Takeuchi
    AEC, Chiba
  • Y. Iwata, K. Yamamoto
    NIRS, Chiba-shi
  • H. Kashiwagi
    JAERI/ARTC, Gunma-ken
  • A. Schempp
    IAP, Frankfurt-am-Main
 
  We have studied "direct plasma injection scheme (DPIS)" since 2000. This new scheme is for producing very intense heavy ions using a combination of an RFQ and a laser ion source. An induced laser plasma goes directly into the RFQ without an extraction electrode nor any focusing devices. Obtained maximum peak current of Carbon 4+ beam reached 60 mA with this extremely simple configuration. The details of the experimental result will be presented.  
FPAE006 Optimization of AGS Polarized Proton Operation with the Warm Helical Snake 1003
 
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • L. Ahrens, M. Bai, K.A. Brown, C.J. Gardner, J. Glenn, H. Huang, A.U. Luccio, W.W. MacKay, T. Roser, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
 
  Funding: US DOE and RIKEN Japan.

A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

 
FPAE014 Acceleration of Polarized Protons in the AGS with Two Helical Partial Snakes 1404
 
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, G. Bunce, E.D. Courant, C.J. Gardner, J. Glenn, R.C. Gupta, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, E. Willen, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura
    RIKEN/RARF/CC, Saitama
  • J. Takano
    RIKEN, Saitama
  • D.G. Underwood
    ANL, Argonne, Illinois
  • J. Wood
    UCLA, Los Angeles, California
 
  Funding: Work supported by U.S. DOE and RIKEN of Japan.

The RHIC spin program requires 2*1011 proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is not enough space in the ring to install a full snake to overcome the numerous depolarizing resonances. An ac dipole and a partial Siberian snake have been used to preserve beam polarization in the past. The correction with this scheme is not 100% since not all depolarizing resonances can be overcome. Recently, two helical snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.