A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Liu, Y.

Paper Title Page
TPPE015 The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications 1422
 
  • Y. Kawai, G. Alton, Y. Liu
    ORNL, Oak Ridge, Tennessee
 
  Funding: Research at ORNL is supported by the U.S. DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with the objective of determining the added delay time associated with each of these target matrices.

 
TPPE017 A New Broadband Microwave Frequency Device for Powering ECR Ion Sources 1529
 
  • Y. Kawai, G. Alton, Y. Liu
    ORNL, Oak Ridge, Tennessee
 
  Funding: Research at ORNL is supported by the U.S. DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

The multiple discrete frequency technique has been used to improve the performance of conventional B-field configuration ECR ion sources. However, the practical application of this technique is very costly, requiring multiple independent single-frequency rf power supplies and complicated rf injection systems. Broadband sources of rf power offer a low-cost and more effective method for increasing the physical size of the ECR zone within these ion sources. An Additive White Gaussian Noise Generator (AWGNG) system for injecting broadband rf power into these ion sources has been developed in conjunction with a commercial firm. The noise generator, in combination with an external oscillator and a traveling wave tube amplifier, can be used to generate broadband rf power without modifying the injection system. The AWGNG and its use for enhancing the performance of conventional B-field configuration ECR ion sources will be described.

 
TPPE018 Characterization of a Tubular Hot-Cavity Surface Ionization Source 1581
 
  • Y. Liu, H. Z. Bilheux, Y. Kawai
    ORNL, Oak Ridge, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

Elements with low ionization potentials can be efficiently ionized by positive surface ionization. It has been experimentally observed and theoretically shown that the ionization efficiency in a hot-cavity can be significantly higher than expected for the surface ionization mechanism. This is explained by the existence of a thermal plasma inside the cavity consisting of surface ionized ions and thermionic electrons. We have investigated the suggested ioniation mechanisms in a tubular hot-cavity surface ionization source where the area of the exit aperture is small compared with the tube inner surface. Thermal analyses of the tubular cavity and calculated mean number of wall collisions of a neutral particle in the cavity before escaping through the exit aperture are presented. Measured emittance and ionization efficiencies of various elements as a function of the cavity temperature for different cavity materials are discussed.

 
TPPE019 Laser Ion Source Development for ISOL Systems at RIA 1640
 
  • Y. Liu, C. Baktash, J.R. Beene, H. Z. Bilheux, C.C. Havener, H.F. Krause, D.R. Schultz, D.W. Stracener, C.R. Vane
    ORNL, Oak Ridge, Tennessee
  • K. Brueck, Ch. Geppert, T. Kessler, K. Wendt
    Johannes Gutenberg University Mainz, Mainz
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

The isobaric purity of radioactive ion beams (RIBs) is of crucial importance to many experiments. Laser ion sources based on resonant photoionization have already proved to be of great value at existing ISOL RIB facilities. In these ion sources, ions of a selected isotope are produced by laser radiation via stepwise atomic resonant excitations followed by ionization in the last transition. Because each element has its own unique atomic energy levels, the resonant photoionization process can provide elemental selectivity of nearly 100%. We have initiated a research effort to develop a prototype laser ion source with the potential to achieve the high selectivity and high efficiency required for research with ISOL-generated RIBs at the Rare Isotope Accelerator (RIA). A pilot experiment has been conducted to demonstrate resonant photoionization of three atomic species using all-solid-state tunable Ti:Sapphire lasers. Three Ti:Sapphire lasers were provided by the University of Mainz and used in the experiment for three-photon resonant ionization of the elements. Laser generated Sn, Ni, and Ge ions have been successfully obtained in a hot-cavity laser ion source with overall efficiencies of 22%, 2.7%, and 3.3%, respectively.

 
TPPE028 In-Situ Electron Cyclotron Resonance (ECR) Plasma Potential Determination Using an Emissive Probe 2035
 
  • F.W. Meyer, Y. Liu
    ORNL, Oak Ridge, Tennessee
  • H.J. You
    Hanyang University, Seoul
 
  Funding: This research was sponsored by the U.S. DOE under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. HJY acknowledges support from the Korean Science Education Foundation (KOSEF).

In this paper, real-time, in-situ, plasma potential measurements are reported for an ECR ion source and correlated with extracted beam characteristics. The local real-time plasma potential of the ORNL CAPRICE ECR ion source was measured using an emissive probe, which was inserted perpendicularly from the plasma chamber wall at the mid-plane of the ECR zone between one of the six radial loss cones of the magnetic field structure, where perturbation of the main ECR plasma is expected to be small. Slots machined through the plasma- and puller-electrodes at the plasma chamber wall radius permitted insertion of the probe from the extraction side of the ECR source without perturbation of the coaxial microwave injection. The emissive probe technique permits plasma potential determination independent of plasma conditions and avoids problems related to probe geometry. The probe loop tip was pointed toward the chamber center in a radial plane and was located about 5 mm outside of the ECR zone. Details of the measurements, and a comparison with an external-beam-deceleration-based plasma potential determination will be presented.

 
TPPE020 Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility
 
  • D.W. Stracener, G. Alton, J.R. Beene, H. Z. Bilheux, J.-C. Bilheux, J.C. Blackmon, D. Dowling, R.C. Juras, Y. Kawai, Y. Liu, M.J. Meigs, P.E. Mueller, B. A. T. Tatum
    ORNL, Oak Ridge, Tennessee
  • H.K. Carter, A. Kronenberg, E.H. Spejewski
    Center of Excellence for RIB Studies for Stewardship Science, Oak Ridge Associated Universities, Oak Ridge, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available to measure the power-handling capabilities of ISOL production targets. This information will be used to optimize target materials and geometries for high power densities.

 
FPAE053 Isobar Suppression by Photodetachment in a Gas-Filled RF Quadrupole Ion Guide 3250
 
  • Y. Liu, J.R. Beene, C.C. Havener, J. F. Liang
    ORNL, Oak Ridge, Tennessee
  • A.C. Havener
    University of Tennessee, Knoxville, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. Co-author Aaron Havener was under a U.S. DOE Science Undergraduate Laboratory Internship.

A novel method is described for selective suppression of isobar contaminants in negative radioactive ion beams. Negative ion beams extracted from an ion source were decelerated to low energies and injected into a gas-filled radio-frequency quadrupole (RFQ) ion guide where the ions were cooled and unwanted ions were selectively removed by non-resonant photodetachment with photons of sufficient energy. Simulation studies show that the laser-ion interaction time in a 40 cm long RFQ ion guide can be on the order of milliseconds, thus, high efficiency photodetachment is possible with commercially available CW lasers. There are a number of adjacent-Z species whose negative ions are such that photodetachment can be used to suppress the unwanted negative ion species while leaving the species of interest intact. Examples of particular interest include suppressing the 56Co- component in a mixed 56Ni- + 56Co- beam and the 17O- component in a mixed 17O- + 17F- beam. In a proof–of-principle experiment a CW Nd:YAG laser at 1064 nm wavelength was used to selectively remove Co- ions in the (Ni, Co) pair. With laser power on the order of 3 W, 95% of Co- beams were suppressed while only 10% of Ni- beams were neutralized in a He-filled RFQ guide.