A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Krejcik, P.

Paper Title Page
TPAE024 Determination of Longitudinal Phase Space in SLAC Main Accelerator Beams 1856
 
  • C.D. Barnes, F.-J. Decker, P. Emma, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh
    UCLA, Los Angeles, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  In the E164 Experiment at that Stanford Linear Accelerator Center (SLAC), we seek to drive plasma wakes for electron acceleration using 28.5 GeV bunches from the main accelerator. These bunches can now be made with an RMS length of less than 20 microns, and direct measurement is not feasible. Instead, we use an indirect technique, measuring the energy spectrum at the end of the linac and comparing with detailed simulations of the entire machine. We simulate with LiTrack, a 2D code developed at SLAC which includes wakefields, synchrotron radiation and all second order optical aberrations. Understanding the longitudinal profile allows a better understanding of acceleration in the plasma wake, as well as investigation of possible destructive transverse effects. We present results from the July 2004 experimental run and show how this technique aids in data analysis. We also discuss accuracy and validation of phase space determinations.  
TPAE025 Field Ionization of Neutral Lithium Vapor using a 28.5 GeV Electron Beam 1904
 
  • C.L. O'Connell, C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  The E164/E164X plasma wakefield experiment studies beam-plasma interactions at the Stanford Linear Acceleration Center (SLAC). Due to SLAC recent ability to variably compress bunches longitudinally from 650 microns down to 20 microns, the incoming beam is sufficiently dense to field ionize the neutral Lithium vapor. The field ionization effects are characterized by the beam’s energy loss through the Lithium vapor column. Experimental results are presented.  
TPAE042 Beam Matching to a Plasma Wake Field Accelerator Using a Ramped Density Profile at the Plasma Boundary 2702
 
  • K.A. Marsh, C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: DOE Grant No. DE-FG03-92ER40727.

An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plasma source with boundary profiles useful for matching has been created for the PWFA experiments at SLAC.

 
TPAE058 Plasma Dark Current in Self-ionized Plasma Wake Field Accelerators (PWFA) 3444
 
  • E. Oz, S. Deng, T.C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
 
  Particle trapping is investigated with experiment, theory and simulations for conditions relevant to beam driven Plasma Wake Field Accelerators. Such trapping produces plasma dark current when the wakefield aplitude is above a threshold values and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam as well as in gradual density gradients. In the E164X conducted at the Stanford Linear Accelerator Center by a collaboration of USC, UCLA and SLAC, evidence of trapping has been observed. Here we present experimental results and a simplified analytical model of the particle trapping threshold which is compared to simulations done with an object oriented fully parallel 3-D PIC code OSIRIS.  
TOPA002 Review of Beam-Driven Plasma Wakefield Experiments at SLAC
 
  • M.J. Hogan, C.D. Barnes, F.-J. Decker, P. Emma, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori
    UCLA, Los Angeles, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.

In the plasma wakefield accelerator, a short relativistic-electron bunch drives a large amplitude plasma wave or wake. In experiment E-164X, we use the 28.5 GeV, ultra-short (?80 femtosecond), high peak-current (?30 kiloamperes) bunch now available at the Stanford Linear Accelerator Center Final Focus Test Beam facility. The head of this bunch fieldionizes a lithium vapor and excites the wake, and the tail samples the accelerating field. The latter is accomplished by setting the plasma density to match the plasma wavelength to the bunch length. After the plasma, the bunch is dispersed in energy by an imaging magnetic-spectrometer. Preliminary analysis shows that gradients in excess of 15 GeV/m are excited over a plasma length of approximately 10 cm, leading to energy gain on the order of of 1.5 GeV, or about an order of magnitude larger than energy gains reported to date. This gradient is also three orders of magnitude larger than that in the three-kilometer long Stanford linear accelerator that produces the incoming beam. These results are obtained in a new regime for beam-driven plasma accelerators in which the electron bunch creates its own plasma. The current status of the experiment as well as future plans will be discussed.

 
RPAE019 Positron Source from Betatron X-Rays Emitted in a Plasma Wiggler 1625
 
  • D.K. Johnson, C.E. Clayton, C. Huang, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3x1017 cm-3, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.  
RPAT079 Resolution of Transverse Electron Beam Measurements Using Optical Transition Radiation 4042
 
  • R. Ischebeck, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, W. Lu
    UCLA, Los Angeles, California
  • S. Deng, E. Oz
    USC, Los Angeles, California
  • M. Lincoln
    Stanford University, Stanford, Califormia
 
  Funding: Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.

In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.

 
RPAT082 Coherent Transition Radiation To Measure the SLAC Electron Bunch Length 4102
 
  • P. Muggli
    USC, Los Angeles, California
  • C.D. Barnes, M.J. Hogan, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • R. Ischebeck, H. Schlarb
    DESY, Hamburg
 
  Funding: Work supported by U.S. DOE.

Ultrashort electron bunches are now available at Stanford Linear Accelerator Center and are use mainly to produce short bursts of x-rays in a magnetic undulator and for plasma wakefield acceleration experiments. The shortest bunches have an rms longitudinal width of ˜10 microns, and a peak current of about 30 kA. Methods to measure such short bunch lengths include electro-optic modulation of a short laser pulse in a nonlinear crystal and coherent transition (CTR) autocorrelation. The transition radiation spectrum emitted by the bunches when traversing a 1 micron thin titanium foil is coherent for wavelengths longer that the bunch length and extends into the millimeter wavelength range. A CTR far-infrared autocorrelator was used to measure the bunch length as a function of the accelerator. The results obtained with this autocorrelator are the only measurements of the SLAC ultra-short bunches to date. Experimental results, as well as the limitations of the measurements and the future improvements to the autocorrelator will be presented.

 
RPAT078 Bunch Length Measurements Using Coherent Radiation 4027
 
  • R. Ischebeck, C.D. Barnes, I. Blumenfeld, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, W. Lu, K.A. Marsh
    UCLA, Los Angeles, California
  • S. Deng, E. Oz
    USC, Los Angeles, California
  • N.A. Kirby
    Stanford University, Stanford, Califormia
 
  Funding: Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.

The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts for a single shot CTR autocorrelator.