Keyword: data-management
Paper Title Other Keywords Page
WEOBM03 The Design and Progress of the Network and Computing System for HEPS software, data-analysis, network, synchrotron 139
 
  • H. Hu, Y.S. Cheng, Q. Hu, Y. Hu, F.Z. Qi, X.H. Wang, S. Zeng, H.M. Zhang
    IHEP, Bejing, People’s Republic of China
 
  The 14 beamlines for the phase I of High Energy Photon Source(HEPS) will produces more than 300PB/year raw data. Efficiently storing, analyzing, and sharing this huge amount of data presents a significant challenge for HEPS. HEPS Computing and Communication System(HEPSCC), also called HEPS Computing Center, is an essential work group responsible for the IT R&D and services for the facility, including IT infrastructure, network, computing, analysis software, data preservation and management, public services etc. Aimed at addressing the significant challenge of large data volume, HEPSCC has designed and established a network and computing system, making great progress over the past two years.  
slides icon Slides WEOBM03 [2.921 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOBM03  
About • Received ※ 27 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 09 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBM04 Advancing Simulation Capabilities at European XFEL: A Multidisciplinary Approach simulation, FEL, detector, real-time 142
 
  • F. Yang, S. Göde, D. La Civita, D. Loureiro, H. Sinn
    EuXFEL, Schenefeld, Germany
  • M. Rehwald
    HZDR, Dresden, Germany
  • T. Stoye
    DESY, Hamburg, Germany
 
  At European XFEL, computational techniques such as FEA and CFD are widely applied in various scientific and engineering fields. In this contribution, a selection of multi-physics and multi-scaled models using FEA tools are presented, which virtually replicate the interaction process of XFEL beam with different materials, taking into consideration heat transfer, structural deformation and phase transition. To gain comprehensive insights into the fluid behaviors and performance of the detector cooling system and liquid sample delivery system, parametric studies are conducted using CFD simulation code FLUENT. Furthermore, a realistic simulation requires a secured process of Verification and Validation of the computational model. Specific guides and standards need to be followed to ensure the credibility and accuracy of the simulation results. Additionally, the FAIR principle for simulation data analysis is introduced at European XFEL. Based on reliable simulation data and real-time sensing data, the concept of digital twin will be integrated into the simulation framework, serving as a new safety constraint for monitoring and optimizing of the facility operation.  
slides icon Slides WEOBM04 [3.271 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOBM04  
About • Received ※ 20 November 2023 — Revised ※ 22 November 2023 — Accepted ※ 16 July 2024 — Issued ※ 18 July 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)