

The Design and Progress of the Network and Computing System for HEPS

Hao Hu, on behalf of HEPSCC IHEP CC/HEPS CC Institute of High Energy Physics, CAS

Nov 8, 2023

- 1. About HEPS & HEPS CC
- 2. Challenge and Missions for HEPSCC
- 3. System Design and Progress
- 4. Summary & Plan

- 1. About HEPS & HEPS CC
- 2. Challenge and Missions for HEPSCC
- 3. System Design and Progress
- 4. Summary & Plan

High Energy Photon Source (HEPS)

- The fourth generation light source in China High energy, high brightness
- Located in Beijing about 80KM from IHEP
- Officially approved in Dec. 2017, started in 2018
- The whole project will be finished in mid-2025
- The construction of the civil structure is completed

Main parameters	Unit	Value
Beam energy	GeV	6
Circumference	m	1360.4
Emittance	pm∙rad	< 60
Brightness	phs/s/mm ² /mrad ² /0.1%BW	>1x10 ²²
Beam current	mA	200
Injection		Тор-ир

HEPS Beamlines in phase I

14 public beamlines + 1 optics test beamline in Phase I Can accommodate over 90 beamlines in total

Ray Protein Crystallography-ID02 Beamlin <u>e</u>	ID30 <u>-</u> Transmission X-Ray Microscopic Beamline
al Structure Probe Beamline-ID05	ID31 <u>-</u> High Pressure Beamline
ineering Materials Beamline <u>-</u> ID0 <u>7</u>	ID33 <u>-</u> Hard X-Ray High Resolution Spectroscopy Beamline
herent Scattering Beamline <u>-</u> ID0 <u>9</u>	BM44 <u>-</u> Tender X-Ray Beamline
Pink Beam SAXS Beamline <u>-</u> ID08	ID41-High Resolution Nanoscale Electronic Structure Spectroscopy Beamline
oprobe Multimodal Imaging <u>-</u> ID19 Beamline	ID42 <u>-</u> Optics Test Beamline
rd X-Ray Imaging Beamline <u>-</u> ID21	ID46 <u>-</u> X-Ray Absorption Spectroscopy Beamline

Progress of the HEPS project

- □ Now at the stage of equipment installation
- □ 2023.01, HEPS booster installation completed
- □ 2023.02, Start installation of storage ring
- 2023.03, HEPS achieved the first electron beam accelerated to 500 MeV
- □ First batch of beamlines began to install and debug equipment

HEPS CC: the Computing & Communication System for HEPS

■ 30+ members

- Matrix management, share the talents and knowledge with other experiments
- Most of the members are coming from IHEP Computing Center (IHEP CC)
- 3 from CSNS/Computing and Software group, 1 from Beamline

7 work groups

- Infrastructure , Network, Computing & Storage
- **Scientific Software, Database & Public Service , Monitoring, Security**

- 1. About HEPS & HEPS CC
- 2. Challenge and Missions for HEPSCC
- 3. System Design and Progress
- 4. Summary & Plan

IT services for Beamline experiments

IT services are needed during the whole life-cycle of the Beamline experiments

- Provision of scientific data and user services for HEPS
 - Infrastructure

HEPS CC Missions

- Network
- Computing
- Storage
- Data Management
- Scientific Software
- Public Software and Services
- Research on open IT technologies related to HEPS

Data Challenges

Increased source brightness, X-ray detector capabilities have been continuously improving
 More than 24PB raw data will produced per month

Beamlines	Burst output(Byte/day)	Average output(Byte/day)
B1 Engineering Materials Beamline	600TB	200TB
B2 Hard X-ray Multi-analytical Nanoprobe (HXMAN) Beamline	500TB	200TB
B3 Structural Dynamics Beamline (SDB)	8TB	ЗТВ
B4 Hard X-ray Coherent Scattering Beamline	10TB	ЗТВ
B5 Hard X-ray High Energy Resolution Spectroscopy Beamline	10TB	1TB
B6 High Pressure Beamline	2TB	1TB
B7 Hard X-Ray Imaging Beamline	1000TB	250TB
B8 X-ray Absorption Spectroscopy Beamline	80TB	10TB
B9 Low-Dimension Structure Probe (LODISP) Beamline	20TB	5TB
BA Biological Macromolecule Microfocus Beamline	35TB	10TB
BB pink SAXS	400TB	50TB
BC High Res. Nanoscale Electronic Structure Spectroscopy Beamline	1TB	0.2TB
BD Tender X-ray beamline	10TB	1TB
BE Transmission X-ray Microscope Beamline	25TB	11.2TB
BF Test beamline	1000TB	60TB
Total average:		805.4TB/day, 24.16PB/month

Estimated data volume of HEPS at Phase I

Huge amount of data is a big challenge for data management and processing

Challenges for HEPSCC

■ Large volume of Data

- High I/O throughput and speed: read(max: 6.94GB/s) & write speed(max:15GB/s)
- Hierarchical storage: Beamline Disk→ Central Disk→ Tape
- High capability: Long-term data preservation
- Big Data Management
 - Metadata Catalogue
 - The organization and retrieval of data
- **Fast Data Analysis**
 - Online / real-time analysis and fast feedback
 - Offline / Data Reconstruction, Analysis ...
 - Capability / The more the better / At least meet the requirements for beamlines

Scientific software

- Scientific Software Framework
- Layered and modularized software platform for data processing
- Build a self-sustaining software ecosystem

Public & Data Service

- User management and authentication
- Experiment process management / services
- User interface for experiments, data access/sharing and analysis

- 1. About HEPS & HEPS CC
- 2. Challenge and Missions for HEPSCC
- 3. System Design and Progress
- 4. The Overall Progress
- 5. Summary & Plan

Machine Room

- About 800m²: Main Room(520m²), UPS Room, Tape library
- 47 cabinets, reserve space for future expansion
- Electric power
 - Total capacity is 2,500KVA
 - UPS capacity is 800KVA, 1/2 hour backup
 - 15kW/cabinet for storage, 30kW/cabinet for computing
 - Provide dual power supply
- Use Row-Air conditioning with natural cooling
- Progress
 - Micromodule、Electric power and Refrigeration system have been completed
 - Provide the operation environment for IT equipment

Network

Extensible and high performance network infrastructure

- Core network bandwidth: 200Gbps
- Data center bandwidth: 200Gbps
- Both campus wired network and wireless network are followed the same management rules in IHEP
- RoCE(RDMA over Converge Ethernet) is supported to provide high performance and lossless network for data center
- Firewalls are used to provide secure environments for both Accelerator Control Network and Beamline Control Network
- Core network and data center network are almost ready at HEPS Campus

Storage policy for scientific data

HEPS uses 3-tiered storage architecture

- **①** Raw data/processed data are kept on beamline storage for a maximum of 7 days
- ② Raw data/processed data are kept on central storage for a maximum of 90 days
- **③** Raw data are archived to the tape for Long-term storage, although No budget for tape

Data storage policy will be adjusted according to the actual data volume and funding situation

Storage

Beamline storage, capacity: 800TB, distributed all-flash SSD arrays

Huawei OceanStor 9950, 100 TB (currently available), read 60GB/s, write 40GB/s

- Central storage, capacity: 30PB, distributed high-density storage
 Huawei OceanStor 9550, 2.4 PB (currently available), read 16GB/s, write 12GB/s
- Tape storage: Compliant with the LTO9 standard
 THE TLi6000, 2 drives and 2 PB tapes

Features

- Data center network: 200Gbps
- DPC Private Client
 - A single client can connect to multiple storage nodes
 - Support POSIX and MPI-IO for HPC
 - Use RDMA(RoCE)
- User Permission, mapping local AD domain with LDAP@IHEP

Computing

Computing Resources

- First stage, 2400 CPU cores >=120TFLOPS , 30 GPU cards>=360TFLOPS
- Far from enough, need more funding support

Unified resource management and scheduling

- scalable architecture, provide computing resources with necessary software and services
- Resource pool: heterogeneous resources(CPU, GPU, DCU...), image repositories, software and so on
- Resource management middleware: K8S, Slurm, Openstack...
- HPC cluster, real-time data processing farm, cloud-based analysis and web-based analysis

Data analysis software(1)

Daisy framework

Data Analysis Integrated Software sYstem(Daisy)

- Basic, common, scalable framework
 - Data engine for high-throughput, multimodal, and multi-source data access
 - Computing engine for low latency data processing with different scales, throughputs via heterogeneous computing power
 - Interface and developing environment for scientific software development
- To establish a software ecosystem for data processing and analyzing for big science
- The basic framework of Daisy has been released
 <u>https://daisy.ihep.ac.cn/</u>

Data analysis software(2)

Scientific software

- More than 30 scientific algorithms and tools have been integrated or developed
- PDF, Daisy-BMX, XASMatch, XASPCA&LCF, HEPSCT, XRF-mapping...

Scientific data processing service

- Automatic pipelines from raw data to get the predicted structure
- Remote large volume data access
- Applied to other scientific area, such as space science

Released scientific software in Daisy

Data management

- Data Policy for HEPS
 - The ownership, curation, archiving and access to scientific data and metadata
- Data management software, DOMAS
 - Metadata catalogue
 - metadata acquisition
 - data transfer
 - data service
 - Track and manage data throughout its entire lifecycle

■ Data format

- Use HDF5 data format, follow the Nexus conventions
- Design HDF5 data format for beamlines
- Promote the standardization of the data format
 - Spectroscopy, imaging, diffraction scattering

User service

- Provide services for the entire process of user experiment
- Proposal submission, safety training, beam time allocation, experiment management, visiting services and data services...
- Roles: users, beamline administrators, user office, experts...
- User Authentication: Single-Sign-On account

Data service

- Data search, download, access, analysis
- HDF5 web viewer, client for downloading
- Provide data analysis service via virtual cloud desktop and JupyterLab

HEPS CC System Integration/Test bed/Production

Set up testbed at BSRF to integrate software systems to verify interfaces and process.

HEPS CC system has been tested in the real experimental environment, moved to production gradually.

Simple verification of the data management system

- Network bandwidth is 1Gb/s
- Beamline storage: 2TB NAS, Dell EMC NX3240, NFS file system
- Central storage: 80TB disk array, Lustre file system
- Metadata ingest, catalogue, data transfer, data service

July, 2021, BSRF-3W1 test beamline

- Network bandwidth updated to 10Gb/s
- Beamline storage & Central storage: 80TB disk array, Lustre file system
- Integrate MAMBA,DMS, Daisy, computing system

2022-2023, BSRF 4W1B/1W1A/4W1A

Running in production environment

- Network bandwidth updated to 25Gb/s
- Beamline storage: Huawei Ocean Store 9950
- Central storage: 80TB disk array, Lustre file system
- Follow real experiment process, provide Pymca to do analyzing at 4W1B

Data acquisition Analysis framework Interface CT reconstruction In

Integration test at BSRF

Photon/Neutron Source Facility Alliance for data and software

Conference of Advanced Photon/neutron Source Data And Software(CAPSDAS) Mar, 2023 • BEIJING

Alliance founding members

- HEPS (High Energy Photon Source)
- SHINE (Shanghai HIgh repetitioN rate XFEL and Extreme light facility)
- SSRF (Shanghai Synchrotron Radiation Facility)
- HALF (Hefei Advanced Light Facility)
- CSNS (China Spallation Neutron Source)

Collaborate to address data and software challenges

- Establish common scientific data management policy
- Develop metadata standard
- R&D of data management and analysis software framework
- Develop disciplinary algorithm and software
- Build software ecosystem

- The design of HEPSCC system has been thoroughly verified
- HEPSCC has enter the phase of equipment installation and debugging
- Meet the requirements of the first stage
- Need more financial support
 - Permanent storage, computing resources
- Keep collaborating with other photon/neutron source facilities
 - to address challenges of data and software
 - HEPS, CSNS, SHINE, SSRF, HALF...

Thank you for your attention!