Paper | Title | Page |
---|---|---|
TUOAM05 | Thermal-Deformation-Based X-Ray Active Optics Development in IHEP | 10 |
|
||
Funding: National Natural Science Foundation of China (11505212, 11875059); Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019012). Advanced light source require small wavefront distortion to maintain the quality of the X-ray beam. Active optical wavefront correction technology is a very important solution to solve the service problems of ultra-precise devices under such conditions. In this paper, we will report our recent progress on this active optics system development including surface metrology and mirror modulation. Based on the research of laser-heating-based thermal deformation modulation technology, this project proposes to modify the mirror surface of X-ray mirrors based on semiconductor microfabrication process, and modulate the local deformation of the mirror surface by electric heating to realize the surface shape correction /modulation of X-ray mirrors. Since the modulation unit acts directly on the reflective region of the mirror surface, it has a better surface shape correction capability than the conventional body deformation modulation. The solution also has the advantage of high efficiency and low cost. *Yang F, Li M, Gao L, et al. Laser-heating-based active optics for synchrotron radiation applications[J]. Optics Letters, 2016, 41(12): 2815-2818. |
||
Slides TUOAM05 [18.205 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUOAM05 | |
About • | Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 01 February 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOBM02 | Development of the Bent Focusing Mirror in HEPS from Design to Test | 136 |
|
||
The focusing mirrors are important for each beamline in the 4th generation photon source. One bent focusing face-down mirror in HEPS is taken for an example to be introduced from the design to the test. The effect of the gravity of the mirror is considered in the design. Moreover, for the sake of the compromise between the processing and the precision, the polygonal structure is adopted. Also, the iteration of the solution is improved to increase the design efficiency. The results reveal that the theoretical precision of the mirror after bending can reach less than 100 nrad RMS. In the aspect of the mechanics, the scheme of four roller bender comes out to avoid the parasitic moment, and the movable component in the bender are all coated with the MoS2. As the type of the measurement is facing side which is different from the type of the actual condition, the effect of the gravity must be included in the metrology results. In the meantime, the stability and the repeatability are also measured. The result can be converged to around 200 nrad RMS, which is less than the required error. The stability, ¿R/R, can be constrained under the 0.6%, showing the outstanding performance. | ||
Slides WEOBM02 [3.638 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOBM02 | |
About • | Received ※ 25 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 07 November 2023 — Issued ※ 16 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |