Paper | Title | Page |
---|---|---|
TUPYP004 | A Setup for the Evaluation of Thermal Contact Resistance at Cryogenic Temperatures Under Controlled Pressure Rates | 37 |
|
||
The design of optical elements compass different development areas, such as optics, structures and dynamics, thermal, and control. In particular, the thermal designs of mirrors aim to minimize deformations, whose usual requirements are around 5 nm RMS and slope errors in the order of 150 nrad RMS. One of the main sources of uncertainties in thermal designs is the inconsistency in values of thermal contact resistances (TCR) found in the literature. A device based on the ASTM D5470 standard was proposed and designed to measure the TCR among materials commonly used in mirror systems. Precision engineering design tools were used to deal with the challenges related to the operation at cryogenic temperatures (145 K) and under several pressures rates (1~10 MPa) whilst ensuring the alignment between the specimens. We observed using indium as Thermal Interface Material reduced the TCR in 10~42,2% for SS316/Cu contacts, and 31~81% for Al/Cu. Upon analyzing the measurements, we identified some areas for improvements in the equipment, such as mitigating radiation and improving the heat flow in the cold part of the system that were implemented for the upgraded version. | ||
Poster TUPYP004 [2.549 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP004 | |
About • | Received ※ 02 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 22 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPYP005 | On the Performance of Cryogenic Cooling Systems for Optical Elements at Sirius/LNLS | 40 |
|
||
Funding: Ministry of Science, Technology and Innovation (MCTI) Sirius’ long beamlines are equipped with cryogenic cooled optics to take advantage of the Silicon thermal diffusivity and expansion at those temperatures, contributing to the preservation of the beam profile. A series of improvements was evaluated from the experience in the employment of such cooling systems during the early years of operation. The main topic refers to the prevention of instabilities in the temperature of the optics due to variations in the liquid nitrogen cylinder pressure, refill automation or progressive variations of the convective coefficient into the cryostat. This work discusses the performance of these systems after optimizing the pressure of the vessels and their control logics, the effectiveness of occasional purges, cool down techniques, and presents the monitoring interface and interlock architecture. Moreover, we present the reached solution for achieving higher beam stability, considering liquid nitrogen flow active control (commercial and in-house). Also propose the approach for the future 350 mA operation, including different cooling mechanisms. |
||
Poster TUPYP005 [1.250 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP005 | |
About • | Received ※ 24 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 22 November 2023 — Issued ※ 18 July 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPPP002 | The Status of the High-Dynamic DCM-Lite for Sirius/LNLS | 154 |
|
||
Funding: Ministry of Science, Technology and Innovation (MCTI) Two new High-Dynamics Double Crystal Monochromators (HD-DCM-Lite) are under installation for QUATI (superbend) and SAPUCAIA (undulator) beamlines at Sirius. The HD-DCM-Lite portrays an updated version of Sirius LNLS HD-DCMs not only in terms of being a lighter equipment for sinusoidal scans speeds with even higher stability goals, but also bringing forward greater robustness for Sirius monochromators projects. It takes advantage of the experience gained from assembly and operation of the previous versions during the last years considering several work fronts, from the mechanics of the bench and cooling systems to FMEA, alignment procedures and control upgrades. In this work those challenges are depicted, and first offline results regarding thermal and dynamical aspects are presented. |
||
Poster WEPPP002 [7.970 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP002 | |
About • | Received ※ 01 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |