Paper | Title | Page |
---|---|---|
TUPYP004 | A Setup for the Evaluation of Thermal Contact Resistance at Cryogenic Temperatures Under Controlled Pressure Rates | 37 |
|
||
The design of optical elements compass different development areas, such as optics, structures and dynamics, thermal, and control. In particular, the thermal designs of mirrors aim to minimize deformations, whose usual requirements are around 5 nm RMS and slope errors in the order of 150 nrad RMS. One of the main sources of uncertainties in thermal designs is the inconsistency in values of thermal contact resistances (TCR) found in the literature. A device based on the ASTM D5470 standard was proposed and designed to measure the TCR among materials commonly used in mirror systems. Precision engineering design tools were used to deal with the challenges related to the operation at cryogenic temperatures (145 K) and under several pressures rates (1~10 MPa) whilst ensuring the alignment between the specimens. We observed using indium as Thermal Interface Material reduced the TCR in 10~42,2% for SS316/Cu contacts, and 31~81% for Al/Cu. Upon analyzing the measurements, we identified some areas for improvements in the equipment, such as mitigating radiation and improving the heat flow in the cold part of the system that were implemented for the upgraded version. | ||
Poster TUPYP004 [2.549 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP004 | |
About • | Received ※ 02 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 22 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPPP002 | The Status of the High-Dynamic DCM-Lite for Sirius/LNLS | 154 |
|
||
Funding: Ministry of Science, Technology and Innovation (MCTI) Two new High-Dynamics Double Crystal Monochromators (HD-DCM-Lite) are under installation for QUATI (superbend) and SAPUCAIA (undulator) beamlines at Sirius. The HD-DCM-Lite portrays an updated version of Sirius LNLS HD-DCMs not only in terms of being a lighter equipment for sinusoidal scans speeds with even higher stability goals, but also bringing forward greater robustness for Sirius monochromators projects. It takes advantage of the experience gained from assembly and operation of the previous versions during the last years considering several work fronts, from the mechanics of the bench and cooling systems to FMEA, alignment procedures and control upgrades. In this work those challenges are depicted, and first offline results regarding thermal and dynamical aspects are presented. |
||
Poster WEPPP002 [7.970 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP002 | |
About • | Received ※ 01 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOAM05 | Modeling the Disturbances and the Dynamics of the New Micro CT Station for the MOGNO Beamline at Sirius/LNLS | 256 |
|
||
Funding: Ministry of Science, Technology and Innovation (MCTI) At the 4th generation synchrotron laboratory Sirius at the Brazilian Synchrotron Light Laboratory (LNLS), MOGNO is a high energy imaging beamline*, whose Nano Computed Tomography (CT) station is already in operation. The beamline’s 120x120 nm focus size, 3.1x3.1 mrad beam divergence, and 9·1011 ph/s flux at 22-67 keV energy, allows experiments with better temporal and spatial resolution than lower energy and lower stability light sources. To further utilize its potential, a new Micro CT station is under development to perform experiments with 0.5-55 um resolution, and up to 4 Hz sample rotation. To achieve this, a model of the disturbances affecting the station was developed, which comprised: i) the characterization and simulation of disturbances, such as rotation forces; and ii) the modeling of the dynamics of the Micro-station. The dynamic model was built with the in-house developed Dynamic Error Budgeting Tool**, which uses dynamic substructuring to model 6 degrees of freedom rigid body systems. This work discusses the tradeoffs between rotation-related parameters affecting the sample to optics stability and the experiment resolution in the frequency domain integrated up to 2kHz. * N. L. Archilha, et al. 2022, J. Phys.: Conf. Ser. 2380 012123. ** R. R. Geraldes et al. 2022, Precision Engineering Vol. 77, 90-103. |
||
Slides THOAM05 [11.814 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THOAM05 | |
About • | Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 04 March 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |