

Modeling the dynamics and disturbances of the MOGNO Microstation

Gabriel Shen Baldon gabriel.baldon@InIs.br Guilherme S. de Albuquerque

guilherme.sobral@lnls.br

Outline

- 1. The MOGNO Beamline
- 2. The Microstation
- 3. Methodology
- 4. Dynamic model
- 5. Disturbances
- 6. Error budget
- 7. Conclusions

BRAZILIAN GOVERNMENT

The MOGNO Beamline

Microstation – Core-flow module Design phase

Nanostation Commissioning

Microstation – High-throughput Assembly

The MOGNO Beamline

Images provided by Daphne Pino, Nathaly Archilha (LNLS-CNPEM) and Rodrigo Surmas (Petrobras).

Optics overview:

- » Bending magnet source
- » Up to 9e11 ph/s/100 mA flux
- » KB system:

5

- » 120 nm x 120 nm focus
- » Multilayer mirrors
- $\gg~22~keV;$ or 39 and 67.5 keV
- » 3.1 mrad x 3.1 mrad divergence

Features:

- » High-throughput (30 s/sample)
- » Core-flow experiments
- » Multi-scale analysis:
 - » Zoom
 - » 500nm 55 μ m resolution
- » High-speed fly scan tomography
- Sample Holder compatibility with other Sirius beamlines
- » Direct and indirect detection system

Techniques:

- » X-ray tomography
- » Zoom tomography
- » Time-resolved tomography
- » Dual energy tomography
- » In-situ tomography
- » Absorption and phase contrast regimes
- » Helical tomography

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

O Fixed▲ Bearing

- 1. Granite base
- 2. Granite feet
- 3. Structural frame
- 4. Vertical stages
- 5. Sample module
- 6. Long-stroke X stage
- 7. Rotation stage
- 8. Planar stage
- 9. Sample

Centralized

The MOGNO Microstation

- Reconstruction challenges
 - Sample-to-optics instabilities generate errors
- Compensation:
 - Passive:
 - Reduce sensitivity to disturbances
 - Calibration (systematic errors)
 - In-situ metrology (systematic and random errors to some extent)
 - Active:
 - Reduce disturbance forces (e.g., autobalancing system)
 - In-situ control system

Effects of sample vibration in reconstructed tomography. Simulated data provided by Eduardo Miqueles (LNLS-CNPEM).

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Wiggled

BRAZILIAN GO

MINISTRY OF

SCIENCE TECHNOLOGY AND INNOVATION

Methodology

- Specifications: boundary conditions given by stakeholders
- Disturbances: boundary conditions from the environment
- Mechanical design: conceptual and detailed system design
- Dynamic model: ideal representation of the system's dynamics
 - FE: finite element
 - LM: lumped mass
- Disturbance model: ideal representation of the disturbances
- Final design: Design that meets specifications according to the models

FE model

• Pros:

- High fidelity
- Integration with many kinds of models (thermal, fluids, structural, modal)
- Cons:
 - Harder to prepare
 - Needs detailed design
 - High computational cost
 - Less clear for sensitivity analysis

LM model

- Pros:
 - High computational efficiency
 - Can be used at any design stage
 - Integration with control system modeling
- Cons:
 - Lower fidelity (rigid body only)

- Microstation's complex geometries make it unfeasible to use FE for error-budget during design phase
- Solution:
 - Have one FE model to use as high-fidelity target to tune the LM model and use the LM model for error-budgeting
- FE model:
 - Modal analysis in ANSYS
 - High performance computer
 - Long process of simplifying geometries
 - Done once main structure is designed
 - Contact stiffness values mostly from experimental data obtained at LNLS

First 5 eigenmodes found in ANSYS. Simulation data provided by André Rocha (LNLS-CNPEM).

- LM model:
 - In CAD software, larger bodies divided into smaller bodies to represent flexible body modes from ANSYS
 - Data exported from CAD with IET
 - DEB-Tool to build the model
 - Initial contact stiffness values from experimental data or analytical models (flexures, bolted connections, Hertz contacts)
 - Stiffnesses later tuned to match ANSYS eigenfrequencies

- Results of tuning process deemed good when difference in eigenfrequency between FE and LM models was less than 5 % for first five eigenmodes
- After that, changes in the design, such as changing position of contact points, adding contact points, changing joint stiffnesses, or changing disturbances, are only applied to LM model

Frequency difference: -0.3%

- Results of tuning process deemed good when difference in eigenfrequency between FE and LM models was less than 5 % for first five eigenmodes
- After that, changes in the design, such as changing position of contact points, adding contact points, changing joint stiffnesses, or changing disturbances, are only applied to LM model

Frequency difference: +3%

- Results of tuning process deemed good when difference in eigenfrequency between FE and LM models was less than 5 % for first five eigenmodes
- After that, changes in the design, such as changing position of contact points, adding contact points, changing joint stiffnesses, or changing disturbances, are only applied to LM model

Frequency difference: -2%

- Results of tuning process deemed good when difference in eigenfrequency between FE and LM models was less than 5 % for first five eigenmodes
- After that, changes in the design, such as changing position of contact points, adding contact points, changing joint stiffnesses, or changing disturbances, are only applied to LM model

Frequency difference: +2%

- Results of tuning process deemed good when difference in eigenfrequency between FE and LM models was less than 5 % for first five eigenmodes
- After that, changes in the design, such as changing position of contact points, adding contact points, changing joint stiffnesses, or changing disturbances, are only applied to LM model

Frequency difference: +1%

Disturbance model

- PSD used to model disturbances
- Floor vibration: 6 DOF measurements
- Rotation unbalance: dynamic model

Disturbance model

- Rotating unbalance model
- Models forces acting on rotating stage when sample is out of balance
 - High-resolution tomography of region near the edge of the sample
 - Range: ± 20 mm
 - Maximum unbalanced mass: 40 kg
- Autobalancing system:
 - Reduce unbalanced forces to 1 N
 - Active control
 - Total mass: 70 kg
 - Under development by MI-Partners

Parameter	W/o Autobalancing	W/ Autobalancing	
$m_d \; [kg]$	40	70	
<i>h</i> [mm]	120	150	
u_d [mm]	20	9e-2	
<i>f</i> [Hz]	2	2	
F_d [N]	126	1	

AND INNOVATION

Disturbance model

- Results: PSD, CPS or CAS of sample vibration
 - 40 times more vibration without autobalancing

CPS results for sample vibration from DEB-Tool, in X (top) and Y (bottom) directions. Left side is without autobalancing, and right side is with autobalancing. Cumulative RMS results in meters.

Error Budget

- Errors: sample-to-optics instabilities
 - Dynamics vibration (from DEB-Tool)
 - Spindle error motion (measured at SEA)
- Peak-to-peak total error must sum to less than the resolution
 - Limit: 500 nm PP ≡ 83 nm RMS

BRAZILIAN GOVERNMEN

Error Budget

- Spindle error motion
 - Measured at spindle error analyzer
 - Synchronous part (repeatable):
 - Mostly form errors on bearing
 - Repeats every rotation
 - Systematic, can be compensated with calibration
 - Asynchronous part (random):
 - From random disturbances
 - Not systematic
 - Usually, lower amplitude than synchronous
 - Can be compensated with metrology

Error Budget

- Limit for 500 nm resolution experiments: 83 nm RMS in each direction
- Calibration:
 - By measuring spindle error previously, the repeatable motion error can be compensated during recon
- In-situ metrology:
 - A metrology between the sample module and the rotation stage can measure the motion during the acquisition, compensating both synchronous and asynchronous errors
- Without the autobalancing system and at least a calibration procedure, the microstation is not able to perform to its full specifications

Source	W/o Autoblancing		W/ Autobalancing	
Source	Х	Y	Х	Y
Dynamics	1500	77	46	46
Spindle Sync.	220	85	231	64
Spindle Async.	25	27	26	17
Total	1745	189	303	127
Total w/ calibration	1525	104	72	63
Total w/ metrology	1500	77	46	46

Error budget table, values in nm RMS.

Conclusions and final remarks

- Microstation:
 - Can perform high-resolution experiments, but will have to limit rotation speed and/or unbalance distances
 - In future analyses, more consideration should be taken into the uncertainties of the spindle metrology, since it adds to the error budget
 - Current noise measurements of the SEA for balanced systems are about 10 nm RMS
- The methodology:
 - Using LM models in DEB-Tool allows fast visualization of the impacts of a modification in the design
 - DEB-Tool can also perform dynamic error budget for feedback and feedforward control loops integrated to the dynamic model

Thank you!

谢谢!

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

