Keyword: photon
Paper Title Other Keywords Page
MOPLR035 Fabrication of Superconducting Spoke Cavity for Compact Photon Source cavity, laser, linac, scattering 212
 
  • M. Sawamura, R. Hajima
    QST, Tokai, Japan
  • H. Hokonohara, Y. Iwashita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
 
  Funding: This study is supported by Photon and Quantum Basic Research Coordinated Development Program of MEXT, Japan.
The spoke cavity is expected to have advantages for compact ERL accelerator for X-ray source based on laser Compton scattering. We have been developing the spoke cavity under a research program of MEXT, Japan to establish the fabrication process. Since our designed shape of the spoke is complicated due to increase the RF properties, one-step press forming with one set of molds will cause so large strain to break the sheet. We designed the mold components including the process of press work. The press forming tests of the spoke cavity have been done with the various materials of sheets to check molding performance. In this paper we present status of the spoke cavity fabrication.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR015 Design of a Gamma-Ray Source Based on Inverse Compton Scattering at the Fast Superconducting Linac laser, electron, cavity, brightness 503
 
  • D. Mihalcea
    Northern Illinois University, DeKalb, Illinois, USA
  • B.T. Jacobson, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • P. Piot, J. Ruan
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is sponsored by the DNDO via contract with NIU.
A Watt-level average-power gamma-ray source is currently under development at the FermiLab Accelerator Science & Technology (FAST) facility. The source is based on the inverse Compton scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performance and the main challenges ahead.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3A02 The Los Alamos Multi-Probe Facility for Matter-Radiation Interactions in Extremes electron, linac, laser, proton 729
 
  • R.W. Garnett
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work is supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
A next-generation signature facility based on multi-probe capabilities is being planned at Los Alamos. This new facility will enable the first in a new generation of game-changing scientific facilities for the materials community. The new Matter-Radiation Interactions in Extremes (MaRIE) facility will be used to discover and design the advanced materials needed to meet 21st-century national security and energy-security challenges to develop next-generation materials that will perform predictably in extreme environments. The MaRIE facility will include a new 12-GeV electron linac using a state-of-the-art electron photoinjector and superconducting accelerator technology to drive a 42-keV XFEL to generate x rays of unprecedented flux and quality, coupled with the existing proton-beam capabilities of the LANSCE proton linac, new experimental halls, and new materials fabrication/characterization facilities. A description of this new facility, its requirements, and planned uses and capabilities will be presented. Status of the project will also be presented.
 
slides icon Slides TH3A02 [5.060 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH3A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)