

The Los Alamos Multi-Probe Facility for Matter-Radiation Interactions in Extremes (MaRIE)

Robert Garnett (for the MaRIE Team)

LINAC'16 Lansing, Michigan September 25-30, 2016

UNCLASSIFIED

Outline

- MaRIE Overview & Requirements
- MaRIE XFEL Preconceptual Reference Design
- MaRIE Status

UNCLASSIFIED

MaRIE at LANSCE would leverage existing proton and neutron capabilities to provide a next-generation, multi-probe facility.

MaRIE would provide a transformational facility for materials research at the mesoscale.

- World's highest energy x-ray scattering capability (42-keV XFEL)
- High repetition frequency with simultaneous charged particle dynamic imaging
- Experimental hutches for simultaneous, multi-probe measurements of in-situ transient phenomena in relevant dynamic extremes
- Comprehensive, integrated resources for materials synthesis and control, with national security infrastructure
- Materials discovery, design, and process capability

What is the mesoscale?

Hard X-ray FEL Parameters

NATIONAL LABORATORY

EST 1943

	LCLS-I	SACLA	EXFEL 2016	PAL XFEL 2016	SwissFEL 2017	LCLS-II 2019 SRF / NCRF	MaRIE 202x
X-ray energy Pulse energy photons/pulse	12.8 keV 0.93 mJ 5E11	19.5 keV 0.03 mJ 1E10	24.7 keV 1 mJ 2.5E11	20.6 keV 0.08 mJ 2.5E10	12.4 keV 1.4 mJ 7E11	5 / 25 keV 0.025 / 0.3 mJ 3E10 / 7E10	42 keV 0.35 mJ 5E10
Undulator period K _{rms}	3.0 cm 2.5	1.8 cm 0.94	4.0 cm 1.4	2.44 cm 0.94	1.5 cm 1.1	2.6 cm 0.43 / 1.5	1.86 cm 0.86
Electron beam energy	16.9 GeV	8.5 GeV	17.5 GeV	10 GeV	5.8 GeV	4 / <mark>15</mark> GeV	12 GeV
Linac type Linac length	NCRF S- band 1 km	NCRF C-band 0.4 km	SRF L-band 1.7 km	NCRF S-band 0.78 km	NCRF C-band 0.46 km	SRF / <mark>NCRF</mark> 0.4 / 1 km	TBD <1.4 km
Gun type Cathode	NCRF S- band Cu photo	Pulsed DC CeB ₆	NCRF L-band Cs ₂ Te photo	NCRF S-band Cu photo	NCRF S-band Cu photo	VHF / <mark>S-band</mark> Cs ₂ Te / Cu	TBD
RF pulse Rep. rate	<1 μs 120 Hz	<1 μs 30 Hz	600 μs 10 Hz	< 1 μs 60 Hz	< 1 μs 100 Hz	CW / <mark><1 μs</mark> 930 kHz / <mark>120</mark> Hz	TBD
# pulses/RF	1-2	1-2	2,700	1-2	1-2	N/A / 1-2	TBD
Bunch charge	150 pC	30 pC	250 pC	100 pC	200 pC	20 / <mark>130</mark> pC	100 pC
Bunch length	43 fs	<10 fs	50 fs	43 fs	42 fs	20 / <mark>33</mark> fs	33 fs
Norm. slice emittance	0.4 μm	0.6 µm	0.6 μm	<0.5 µm	0.2 μm	0.14 / <mark>0.48</mark> μm	0.2 μm

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Artist Rendition of MaRIE Conventional Facilities

UNCLASSIFIED

Challenging experiments are planned to observe the *dynamic microstructure* and *phase evolution* in materials down to the sub-granular level while connecting to the macroscale.

Flyer

Optical Laser Spectroscopy

Very Hard

Coherent

X-ray

<u>The goal</u> Predict dynamic microstructure and damage evolution.

<u>The first experiment</u> Multiple, simultaneous dynamic *in situ* diagnostics with resolution at the scale of nucleation sites (< 1 μ m; ps – ns)

12 GeV Electron

Beam

Requirements: Sub-μm spatial resolution 100's – 1000's-μm samples Sub-ns time resolution, ~30 frames in 1–10-μs duration

The model:

Accurate sub-grain models of microstructure evolution coupled to molecular dynamics.

Shock Front

Structure

0.8 GeV

Proton

Beam

Shock Front

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

MaRIE will allow us to break apart the problem.

Laser Particle Imaging

Velocimetry and Accelerometry

Spatial and temporal resolutions for MaRIE mesoscale experiments are defined by analysis of the possible measurement techniques.

		Metals Manufacture and Age aware performance	HE certification and qualification	Turbulent Materials Mixing	Welding and Additive Manufacturing
	Spatial resolution	<100 nm - 20 µm	100 nm - 20 mm	500 nm	<1 µm – 100 µm
	Field of View	100 µm - 1 mm	100 µm - 2 mm	1 mm	0.3 mm – 1 cm
	# of frames	up to 30	up to 30	up to 30	1000 per second
	min pulse sep	< 300 psec	< 500 psec	30 nsec	10 nsec
C	macropulse length	10 µsec	100 µsec	15 µsec	1 msec
	sample thickness	> 250 µm	> 10 µm – 6 cm	1 – 10 cm	0.1 to 10 mm
	Repetition rate	<1 Hz	< 1 Hz	10 Hz	10 Hz
	species	Be - Pu	Typically C, H, O, N	Noble gases, Ga, Be	Be - Pu

	spatial	Framing	Density	sample thickness	sample	sample
	resolution	time	resolution	Z=13	thickness Z=26	thickness Z=92
pRad	< 50 µm	50 nsec	2%	15 cm / 0.8 GeV	3 cm / 0.8 GeV	1 cm / 0.8 GeV
eRad	< 1 µm	> 25 nsec	5%	6 cm / 12 GeV	5 mm / 12 GeV	1 mm / 12 GeV
				>10 µm/ 8 keV	500 mm/42 KeV	200 mm/42 KeV
X ray	< 1 µm	< 100 psec	5%	2 cm/ 42 keV	4 mm/122 KeV	2 mm/122 KeV

UNCLASSIFIED

The 42-keV photon energy and flux are a trade-off between maximizing elastic scattering for diffraction, minimizing absorptive heating, and sample thickness.

High resolution requires a minimum number of coherently scattered photons per sub-ps pulse. This sets the incident number of photons on a sample of $\sim 2x10^{10}$.

Coherent scattering signal (fraction of incident photons coherently scattered just once) as a function of incident photon energy for various materials at thicknesses of 1 μ m (dashed lines) and 100 μ m (solid lines)

J. L. Barber et al., Phys. Rev. B 89 (2014) 184105

UNCLASSIFIED

Multiple probes allows sampling of different temporal and spatial regimes: 42-keV x-ray photons (red), 12-GeV electrons (blue), and 0.8-GeV protons (green)

- Increases experimental hall complexity & cost
- eRad has ~10-ps pulse lengths, ~20-ns pulse spacing, ≤1-µm resolution, penetrate ≤ 2 mm high-Z materials
- pRad has 50-ns pulse lengths, 100-ns pulse spacing, >10-μm resolution, penetrate >1 cm high-Z materials

The MaRIE pulse format needs to be very flexible.

Performance Parameters derived from the measurements quantify the accelerator/XFEL requirements.

Electron Beam Requirements				Photon Requirements		
Energy	12 GeV	12 GeV# of bunches per macropulse10 to 100		Energy	4 to 42 KeV	
Linac fundamental frequency	1.3 GHz	RMS slice energy spread	<u><</u> 0.015%	# per bunch	5x10 ¹⁰	
Linac type	Superconducting	Macropulse to macropulse energy variation	<u><</u> 0.02%	% Transverse coherence	70%	
SC L-band cavity gradient	31.5 MV/m	Pulse energy variation within a macropulse	<u><</u> 0.01%	Pulse length	<u><</u> 100 fs	
Maximum beamline angle	2.0 degrees, max. @ 12 GeV	Min. bunch separation	2.3 ns	Bandwidth	5x10 ⁻⁴	
Maximum macropulse duration	1 ms	Dropped bunch rate	1x10 ⁻³	Divergence	<u><</u> 1 µrad	
Electron source	Photoinjector	Normalized rms slice emittance	<u><</u> 0.2 micron	Polarization	linear	
Maximum bunch charge	0.2 nC	Maximum repetition rate	10 Hz	Tuneability	1%/ms	

Performance Parameters derived from the measurements quantify the accelerator/XFEL requirements.

Parameter	Symbol	Value	Unit		
Electron beam energy	E _b	12	GeV		
Peak current	I _{pk}	3	kA		
Bunch charge	Q	100	рC		
Slice normalized emittance	<i>e</i> n	0.2	μm		
Slice energy spread	σ_{γ}/γ	0.015%			
Undulator period	λ_{u}	18.6	mm		
Peak undulator parameter	K	1.22			
Wavelength	λ	0.2936	Å		
1-D FEL gain parameter	ρ	0.05%			
3-D gain length	L _{G3D}	2.5	m		
UNCLASSIFIED					

An XFEL pre-conceptual reference design that meets the MaRIE performance requirements has been developed.

MaRIE pre-conceptual reference design is based on current technology.

- Accelerating cavities and cryomodules based on 1.3-GHz ILC and DESY XFEL designs
- FLASH 3.9-GHz cryomodules to linearize the beam phase space
- Undulator design based on SwissFEL U15

	Symbol	Value
Undulator period	λ	18.6 mm
Undulator magnetic field	B ₀	0.7 T
rms (peak) undulator parameter	K _{rms} (K _{peak})	0.86 (1.22)
FEL resonance wavelength	λ ₀	0.2934 Å
FEL (Pierce) parameter	ρ	0.0005
Calculated 3D gain length	L _G	2.6 m
Calculated 3D saturated power	Ps	9 GW
FEL pulse energy at saturation	Wp	0.3 mJ

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Photoinjector (PI)

The MaRIE XFEL injector pre-conceptual design

1.3-GHz, normal conducting.

requirements.

CM1

- Long pulse (100 µs) operation, 60 MV/m gradient at cathode.
- Cryomodules 1 & 2 (CM1 & CM2)
 - 1.3-GHz superconducting.
 - Capture beam from PI, accelerate and introduce energy slew for BC1.
- Cryomodules 3 & 4 (CM3 & CM4)
 - 3.9-GHz superconducting.
 - Linearize beam energy slew for BC1.
- Bunch compressor 1 (BC1)
 - ~ 20x compression at ~ 250 MeV.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

(Identical to PITZ) CM2 CM3 CM4

The MaRIE photoinjector design is based on the PITZ photoinjector with a modified solenoid configuration.

quadrupoles

Double reversed-chicane helps reduce timedependent dispersion from CSR wake.

Pre-conceptual design assumes 100 pC because we need a small emittance and small energy spread.

Beam parameters:

100 pC, 30 fsec, 3.4 kA 0.015% energy spread 0.20 µm emittance

We can gain photons by going to higher electron beam energy

Photon requirements: 5x10¹⁰ 42-keV photons 0.02% bandwidth

150-m tunnel contingency to go to 15 GeV in the future; worth $\sim 2x$ photons.

We have contingency in emittance, energy spread, and tunnel length.

UNCLASSIFIED

Significant technical challenges remain to meet the MaRIE performance goals.

- Microbunch Instability dominant challenge; made harder because of our tight energy-spread limit; suppression ideas include laser heater to precompress bunch, use residual dispersion (LBNL), "microbunch" the beam and eliminate BC2 (e-SASE)
- **CSR** novel bunch compressor design; propose demo at BNL
- Wakefields important for MaRIE XFEL, not important for other XFELs; long-range wakefields may limit the bunch spacing due to poor compressor or induced energy spread; propose measurement at FNAL
- Emittance we need the brightest electron injector ever; plans for injector test facility at LANL
- **Distributed Seeding** new concept; propose demo at SLAC
- Droop Corrector short Cu linac (3 m) to compensate during shortest macropulse lengths; needed due to variable pulse format
- Dechirper old concept; relatively low risk; propose demo at BNL

MaRIE Status

- Project presently in the pre-conceptual planning phase.
- We have a pre-conceptual accelerator/XFEL reference design appropriate for this phase of the project that meets the requirements.
- Cost & Schedule estimates are based largely on current technology (supported by several cost and project reviews in 2015).
- Following US Dept. of Energy, National Nuclear Security Agency (NNSA) guidance regarding submission of a large construction project, including DOE Order 413.3B requirements and process.
- Several workshops held this past year on MaRIE experiments and accelerator/XFEL design and requirements.
- External requirements review this week with other NNSA Labs.
- Beginning to initiate discussions with potential partner labs (and others).

Acknowledgements

Thanks to the following members of the MaRIE Team:

Steve Russell, John Lewellen, Dinh Nguyen, Kip Bishofberger, Leanne Duffy, Frank Krawczyk, Quinn Marksteiner, Nikolai Yampolsky, Petr Anisimov, Cindy Buechler, and Joe Otoole

Special Thanks to:

Cris Barnes, Rich Sheffield, and Bruce Carlsten

Thank you for your attention!

UNCLASSIFIED