3 Technology
3C RF Power Sources and Power Couplers
Paper Title Page
TU2A01 State of the Art, Status and Future of RF Sources for Linacs 353
 
  • E. Jensen
    CERN, Geneva, Switzerland
 
  This talk tries an overview of recent developments in RF sources for linear accelerators of different scales and for various applications, spanning a frequency range from about 100 MHz to X-band, spanning duty factors from about 10-3 to CW, and spanning power levels from a few kW up to hundreds of MW average. Exciting recent trends include new bunching concepts for klystrons promising a significant increase of efficiency and better power combiners paving the way to MW-class solid state power amplifiers.  
slides icon Slides TU2A01 [15.049 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TU2A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU2A02 Pulsed High Power Klystron Modulators for ESS Linac Based on the Stacked Multi-Level Topology 359
 
  • C.A. Martins, G. Göransson, M. Kalafatic
    ESS, Lund, Sweden
  • M. Collins
    Lund Technical University, Lund, Sweden
 
  ESS has launched an internal R&D project in view of designing, prototyping and validating a klystron modulator compatible with the requirements based on a novel topology named SML (Stacked Multi-Level). This topology is modular and based on the utilization of High Frequency (HF) transformers. The topology allows for the usage of industrial standard power electronic components at the primary stage at full extent which can easily be placed and wired in a conventional electrical cabinet. It requires only few special components like HF transformers, rectifiers and filters (i.e. passive components) to be placed in an oil tank. This arrangement allows scaling up in average and pulse power to the required levels while keeping the size, cost, efficiency and reliability of the different modules under good control. Besides the very good output pulse power quality, the AC grid power quality is also remarkably high with a line current harmonic distortion below 3%, a unitary power factor and an extremely reduced line voltage flicker below 0.3%. A reduced scale modulator prototype has been built and validated experimentally.  
slides icon Slides TU2A02 [8.596 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TU2A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP09 State of the Art Advanced Magnetron for Accelerator RF Power Source 405
TUPLR006   use link to see paper's listing under its alternate paper code  
 
  • H. Obata, K. Furumoto, H. Miyamoto
    New Japan Radio Co., Ltd., Fujimino Saitama, Japan
 
  X ray sources for linear accelerators continue to be a necessary requirement for industries such as medical, inspection, and nondestructive test equipment. Future requirements for such sources are; low cost, compact packaging and high performance of the RF source for electron acceleration. The magnetron has proven to be a perfect source over other RF sources for linear accelerator use. Because of its simple design, low cost per output, small size and proven performance it meets all required characteristics. New Japan Radio Co., Ltd. has improved and modified its linac magnetrons' performance and characteristics enabling easy matching to the linac modulator, long life and maximum output power. This paper will provide a detailed explanation on the improved magnetron design methodology and its effects on the performance of these magnetrons installed in linac systems. These technologies have been utilized successfully on a commercial level worldwide over the last few years. The technology has been deployed into linac systems operating in S and X band and soon C band, at various output power levels.  
slides icon Slides TUOP09 [1.127 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR044 Design and Operation of Pulsed Power Systems Built to ESS Specifications 558
 
  • M.K. Kempkes, M.P.J. Gaudreau, M.G. Munderville, I. Roth
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
  • J. Domenge
    Sigma Phi Electronics, Wissembourg, France
  • J.L. Lancelot
    Sigmaphi, Vannes, France
 
  Diversified Technologies, Inc. (DTI), in partnership with SigmaPhi Electronics (SPE) has built three long pulse solid-state klystron transmitters to meet spallation source requirements. Two of the three units are installed at CEA Saclay and the National Institute of Nuclear and Particle Physics (IN2P3), where they will be used as test stands for the European Spallation Source (ESS). The systems delivered to CEA and IN2P3 demonstrate that the ESS klystron modulator specifications (115 kV, 25 A per klystron, 3.5 ms, 14 Hz) have been achieved in a reliable, manufacturable, and cost-effective design. There are only minor modifications required to support transition of this design to the full ESS Accelerator, with up to 100 klystrons. The systems will accommodate the recently-determined increase in average power (~660 kW), can offer flicker-free operation, are equally-capable of driving Klystrons or MBIOTs, and are designed for an expected MTBCF of over ten years, based on operational experience with similar systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR045 Thyratron Replacement 561
 
  • I. Roth, M.P.J. Gaudreau, M.K. Kempkes, M.G. Munderville
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: *Work supported by DOE under contract DE-SC0011292
Semiconductor thyristors have long been used as a replacement for thyratrons in low power or long pulse RF systems. To date, however, such thyristor assemblies have not demonstrated the reliability needed for installation in short pulse, high peak power RF stations used with many pulsed electron accelerators. The fast rising current in a thyristor tends to be carried in a small region, rather than across the whole device, and this localized current concentration can cause a short circuit failure. An alternate solid-state device, the insulated-gate bipolar transistor (IGBT), can readily operate at the speed needed for the accelerator, but commercial IGBTs cannot handle the voltage and current required. It is, however, possible to assemble these devices in arrays to reach the required performance levels without sacrificing their inherent speed. Diversified Technologies, Inc. (DTI) has patented and refined the technology required to build these arrays of series-parallel connected switches. DTI is currently developing an affordable, reliable, form-fit-function replacement for the klystron modulator thyratrons at SLAC capable of pulsing at 360 kV, 420 A, 6μs, and 120 Hz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR046 Design, Fabrication, Installation and Operation of New 201 MHz RF Systems at LANSCE 564
 
  • J.T.M. Lyles, W.C. Barkley, R.E. Bratton, M.S. Prokop, D. Rees
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
The LANSCE RM project has restored the proton linac to high power capability after the RF power tube manufacturer could no longer provide devices that consistently met the high average power requirement. Diacrodes® now supply RF power to three of the four DTL tanks. These tetrodes reuse the existing infrastructure including water-cooling systems, coaxial transmission lines, high voltage power supplies and capacitor banks. Each final power amplifier system uses a combined pair of LANL-designed cavity amplifiers using the TH628L Diacrode® to produce up to 3.5 MW peak and 420 kW of mean power. A new intermediate power amplifier was developed using a TH781 tetrode. These amplifiers are the first production of new high power 200 MHz RF sources at accelerators in three decades. Design and prototype testing of the high power stages was completed in 2012, with commercialization following in 2013. Each installation was accomplished during a 4 to 5 month beam outage each year staring in 2014. Simultaneously, a new digital low-level RF control system was designed and tested, and placed into operation this year, meeting the stringent field control requirements for the linac. The rapid-paced installation project changed over from old to new RF systems while minimizing beam downtime to the user facility schedule.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR047 Commissioning of XBox-3: A Very High Capacity X-band Test Stand 568
 
  • N. Catalán Lasheras, C.F. Eymin, J. Giner Navarro, G. McMonagle, S.F. Rey, A. Solodko, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • T. Argyropoulos, D. Esperante Pereira
    IFIC, Valencia, Spain
  • M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
 
  The Compact Linear Collider (CLIC) beam-based acceleration baseline uses high-gradient travelling wave accelerating structures at a frequency of 12 GHz. In order to prove the performance of these structures at high peak power and short pulse width RF, two klystron-based test facilities have been put in operation in the last years. The third X-band testing facility at CERN (Xbox3) has recently been commissioned and has tripled the number of testing slots available. Xbox3 uses a novel way of combining relatively low peak power (6 MW) but high average power klystron units whose power is steered to feed four testing slots with RF to the required power with a repetition rate of up to 400 Hz. Besides the repetition rate, peak power, pulse length and pulse shape can be customized to fit the test requirements. This novel way of combining pulsed RF high power can eventually be used for many other applications where multiple test slots are required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR048 Status and Lesson Learned from Manufacturing of FPC Couplers for the XFEL Program 572
 
  • S. Sierra, G. Garcin, Ch.L. Lievin, G. Vignette
    TED, Velizy-Villacoublay, France
  • A. Gallas, W. Kaabi
    LAL, Orsay, France
  • M. Knaak, M. Pekeler, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  For the XFEL accelerator, Thales, RI research Instrument and LAL are working on the manufacturing, assembly and conditioning of Fundamental power couplers. 670 couplers has been manufactured. The main characteristics of these couplers are remained at 1.3 GHz. The paper describes the full production activity from the starting of the program We describe the lesson learned from a mass production of FPC coupler and different steps necessaries for obtaining a rate up to 10 couplers a week. we propose also some other way to be optimized for a future possible mass production of such components. With comparison of processes and adaptation which could benefit to an increase rate, if needed, including some of them which could be studies from the coupler definition to the manufacturing process in order to obtain a stable and possible increased rate or lower cost of production by decreasing the risks on programs. The status of the production curve during the program is also given  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP10 Design and Commissioning of FRIB Multipacting-Free Fundamental Power Coupler 767
THPLR010   use link to see paper's listing under its alternate paper code  
 
  • Z. Zheng, J.T. Popielarski, K. Saito, S. Stark, T. Xu, Y. Yamazaki
    FRIB, East Lansing, USA
 
  Funding: *Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The original Fundamental Power Coupler (FPC) of Half-Wave Resonator (HWR) for the Facility of Rare Isotope Beams (FRIB) requires multipacting conditioning at operating RF power which is up to 5 kW Continue Wave (CW). Conditioning takes a lot of time and RF power, and its elimination is highly desirable. To significantly shorten the RF conditioning, we developed a multipacting-free coupler design. This paper reports the latest progress in the optimization and prototype tests of multipacting-free coupler. The choke structure is removed and coupler geometry is further modified to protect the coupler RF window from the electron bombardment. The comparison result of multipacting-free coupler with original coupler was performed on automatic conditioning system, which showed significantly time reducing for RF conditioning.
 
slides icon Slides THOP10 [2.442 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP10  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC006 Development of 704.4 MHz Power Coupler Window for Myrrha Project 776
 
  • F. Geslin, P. Blache, M. Chabot, J. Lesrel
    IPN, Orsay, France
  • Ch.L. Lievin, S. Sierra
    TED, Velizy, France
 
  Myrrha is an accelerator driven system (ADS) hybrid research reactor designed for spent nuclear fuel burning. The linac controlling the reactor has to be highly reliable (low failure rate). In order to fulfill requirements of ADS projects like Myrrha, IPNO and Thales are involved in a power couplers research and development program. We develop a power coupler window, with MAX RF design, for 80 kW CW input power. During the study, we take account of fabrication and cost issues. We present in this paper the result of simulations needed to design this coupler window. The electromagnetic, thermal and thermo-mechanical simulations were performed with Ansys. The multipacting simulations were performed with Musicc3D, software developed by IPNO. The conditioning and test bench is also described as two prototypes have to be tested this autumn.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC007 Development of 352.2 Mhz Power Coupler Window for R&D Purposes 779
 
  • F. Geslin, M. Chabot, J. Lesrel, D. Reynet
    IPN, Orsay, France
  • Ch.L. Lievin, S. Sierra
    TED, Velizy, France
 
  IPNO and Thales are conducting power couplers research and development. This paper present a new window design that fulfills European Spallation Source (ESS) requirements (400 kW RF peak power). The results of electromagnetic, thermal, thermo-mechanical, multipacting simulations and the consequences of the new ceramic window of power coupler will be reported. The multipacting simulations were performed with Musicc3D, software developed by IPNO. The new design overcome ceramic's weakness in tension and allows stronger constraints in the power coupler window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC008 Status of the Development and Manufacturing of LCLS-II Fundamental Power Couplers 782
 
  • S. Sierra, G. Garcin, Ch.L. Lievin, C. Ribaud, G. Vignette
    TED, Velizy-Villacoublay, France
  • M. Knaak, A. Navitski, M. Pekeler, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  For the LCLS-II project, Thales and RI research Instrument are working on the manufacturing and assembly of the Fundamental Power Couplers. The paper describes the production of the Fundamental Power Couplers for the LCLS-II project. The main characteristics of these couplers are remained at 1.3 GHz. It describes the main challenges to be overcome principally on the Warm Internal conductor, with a thickness of copper of 150μm. The results obtained on this coating We describe the results obtained on the prototype phase and the status of the serial production on the date of the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR067 Series Production of the RF Power Distribution for the European XFEL 1008
 
  • S. Choroba, V.V. Katalev
    DESY, Hamburg, Germany
  • E.M. Apostolov
    Technical University of Sofia, Sofia, Bulgaria
 
  The RF power distribution for the European XFEL allows for individual RF power for the 808 superconducting cavities of the European XFEL. It consists of a number of elements, not only waveguide components, but also girders, cables or cooling systems. The production of the RF distribution consists of several tasks. In order to deal with the schedule of the entire project a detailed planning, organization and monitoring of the series production of the RF power distribution was required. This paper describes the RF power distribution layout and the series production process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)