2 Proton and Ion Accelerators and Applications
2C RFQs
Paper Title Page
TUPLR050 Design of 4-vane RFQ with Magnetic Coupling Windows for Nuclotron Injector Lu-20 575
 
  • V.A. Koshelev, G. Kropachev, T. Kulevoy, D.A. Liakin, A.S. Plastun
    ITEP, Moscow, Russia
  • A.V. Butenko
    JINR, Dubna, Moscow Region, Russia
  • T. Kulevoy, S.M. Polozov
    MEPhI, Moscow, Russia
  • S.V. Vinogradov
    MIPT, Dolgoprudniy, Moscow Region, Russia
 
  Alvarez-type linac LU-20 is used as Nuclotron injector. In the framework of NICA project the high voltage electrostatic pre-injector for LU-20 has been replaced by RFQ linac. The RFQ was designed by the team of ITEP and MEPhI (Moscow, Russia) and was manufactured in VNIITF (Sneginsk, Russia). The engineering design of the 4-vane RFQ linac with magnetic coupling windows and details of its manufacturing are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR053 Development and Measurements of a 325 MHz RFQ 578
SPWR026   use link to see paper's listing under its alternate paper code  
 
  • M. Schütt, M.A. Obermayer, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • A. Schnase
    GSI, Darmstadt, Germany
 
  In order to have an inexpensive alternative to 4-Vane RFQs above 200 MHz, we study the possibilities of a Ladder-RFQ. The 325 MHz RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the research program with cooled antiprotons at FAIR. This particular high frequency for an RFQ creates difficulties, which are challenging in developing a cavity, especially for 4-ROD RFQs, which dimensions become critically small with increasing the frequency. In order to define a satisfying geometrical configuration for this resonator, both from the RF and the mechanical point of view, different designs have been examined and compared. Very promising results were reached with a ladder type RFQ, which has been investigated since 2013. Due to its geometry, the manufacturing in terms of complexity, time and costs is more beneficial compared to welded accelerators. Furthermore, maintenance is easy to handle. The manufacturing, coppering and assembling of a 0.8 m prototype RFQ is finished. We present recent measurements of the RF-field including power measurements, frequency-tuning, field flatness as well as power measurements.  
poster icon Poster TUPLR053 [47.463 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR054 RFQ Vane Shapes for Efficient Acceleration 581
 
  • Y. Iwashita, Y. Fuwa
    Kyoto ICR, Uji, Kyoto, Japan
  • R.A. Jameson
    IAP, Frankfurt am Main, Germany
 
  RFQ vane shapes for efficient acceleration are under investigation by introducing more terms in addition to the two term potential. They can incorporate with the feature of the trapezoidal shape modulation with less multipole components, while higher acceleration efficiency is expected. The simulation study will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR056 Results of Operation of 162.5 MHz RFQ Couplers 584
 
  • S. Kazakov, J.P. Edelen, T.N. Khabiboulline, O.V. Pronitchev, J. Steimel
    Fermilab, Batavia, Illinois, USA
 
  Two couplers for RFQ of PXEI facility were designed and manufactured. Each coupler designed to deliver 50 KW, CW to RFQ at 162.5 MHz. Results of couplers operation are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR057 Advanced Design Optimizations of a Prototype for a Newly Revised 4-Rod CW RFQ for the HLI at GSI 586
SPWR011   use link to see paper's listing under its alternate paper code  
 
  • D. Koser, H. Podlech
    IAP, Frankfurt am Main, Germany
  • P. Gerhard, L. Groening
    GSI, Darmstadt, Germany
  • O.K. Kester
    TRIUMF, Vancouver, Canada
 
  Within the scope of the FAIR project (Facility for Antiproton and Ion Research) at GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany, the front end of the existing High Charge State Injector (HLI) is upgraded for cw operation. The dedicated new 4-Rod RFQ structure is currently being designed at the Institute for Applied Physics (IAP) of the Goethe University of Frankfurt. The overall design is based on the RFQ structures that were originally developed for FRANZ* and MYRRHA**. Regarding the HLI-RFQ the comparatively low operating frequency of 108 MHz causes a general susceptibility towards mechanical vibrations especially concerning the electrodes because of the necessarily larger distance between the stems. Besides RF simulations and basic thermal simulations with CST Studio Suite, the key issues like mechanical electrode oscillations as well as temperature distribution from heat loss in cw operation are investigated with simulations using ANSYS Workbench. At first instance a dedicated 6-stem prototype is currently being manufactured in order to validate the simulated RF performance, thermal behavior and structural mechanical characteristics.
*M. Heilmann et al., A Coupled RFQ-IH Cavity for the Neutron Source FRANZ, IPAC13
**C. Zhang, H. Podlech, New Reference Design of the European ADS RFQ Accelerator For MYRRHA, IPAC14
 
poster icon Poster TUPLR057 [1.484 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR058 Progress of a 162.5 MHz High-Current RFQ With Coupling Windows 589
SPWR005   use link to see paper's listing under its alternate paper code  
 
  • Q. Fu, P.P. Gan, S.L. Gao, F.J. Jia, H.P. Li, Y.R. Lu, Z. Wang, K. Zhu
    PKU, Beijing, People's Republic of China
 
  Funding: Supported by National Basic Research Program of China(2014CB845503)
A 162.5 MHz, four-vane RFQ with magnetic coupling windows has been designed by the RFQ group of Peking University. Clear frequency separation of the resonant modes and smaller transverse dimension are the advantages of the window-type RFQ. The electromagnetic simulations have shown that the average power loss of this 1.809 m long RFQ is about 50 kW in continuous wave mode. Consequently, a water cooling system was designed via the multi-physics analysis. The mechanical design and assembling technology were also presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR059 Asymmetric Four-Vane RFQ 592
 
  • A.S. Plastun
    ANL, Argonne, Illinois, USA
  • A. Kolomiets, D.A. Liakin
    ITEP, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
A four-vane resonator is widely used in Radio Frequency Quadrupole (RFQ) accelerators. The field distribution in a long four-vane resonator can be easily perturbed by nearest dipole modes which are excited due to the local geometry errors. This paper describes the electromagnetic properties of a four-vane resonator with an introduced asymmetry between neighboring chambers. The asymmetry provides necessary separation of dipole modes keeping losses and field uniformity of quadrupole mode similar to those in a conventional four-vane resonator. This feature of an asymmetric resonator is confirmed by analytical results from transmission line model as well as by CST Studio simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR060 RF Design of the Nuclotron-NICA 145.2 MHz RFQ 595
 
  • A.S. Plastun, V. Andreev, V.A. Koshelev, T. Kulevoy, V.G. Kuzmichev, D.A. Liakin, A. Sitnikov
    ITEP, Moscow, Russia
  • A.V. Butenko
    JINR, Dubna, Moscow Region, Russia
 
  ITEP has designed the Radio-Frequency Quadrupole (RFQ) linac for the JINR NICA Complex (Dubna, Russia) to provide ion beams (q/A ≥ 0.3) with energy of 156 keV/u for further acceleration by existing Alvarez-type linac. The RFQ is based on a 4-vane structure with magnetic coupling windows in order to avoid a risk of excitation of dipole field components inherent in a conventional 4-vane resonator. The paper presents results of the radio-frequency (RF) design and capabilities used for coarse and fine tuning of the field distribution and resonant frequency during manufacturing and finalizing of the RFQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1A06 Status of SPIRAL2 and RFQ Beam Commissioning 668
 
  • R. Ferdinand, P. Bertrand, M. Di Giacomo, H. Franberg, O. Kamalou, J.-M. Lagniel, G. Normand, A. Savalle, F. Varenne
    GANIL, Caen, France
  • J.-L. Biarrotte
    IPN, Orsay, France
  • D. Uriot
    CEA/DRF/IRFU, Gif-sur-Yvette, France
 
  The SPIRAL2 project beam commissioning is started and the superconducting linac installation is being finalized. In parallel with the installations, the first proton beam was extracted in 2014 and the expected beam performances were achieved from both light and heavy ion sources. The conditioning of the RFQ started in October 2015, and the beam commissioning soon after that. After having briefly recalled the project scope and parameters, the present situation of the RFQ beam commissioning is presented.  
slides icon Slides WE1A06 [19.488 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE1A06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A04 SARAF 4-Rods RFQ RF Power Line Splitting Design and Test 693
 
  • J. Rodnizki, D. Hirschmann, Z. Horvitz, B. Kaizer, A. Perry, L. Weissman
    Soreq NRC, Yavne, Israel
 
  In the last years the SARAF 176 MHz 3.8 m long 4-rod RFQ accelerates routinely 2-4 mA CW proton beams to 1.5 MeV for basic studies in physics. However, it has not been successful in running CW deuteron beam for long periods. The findings imply that the RF coupler is the bottle neck to reach 250 kW CW dissipated power, equivalent to 65 kV inter-rod voltage, required to run the CW deuteron beam. A new design that splits the RFQ power between two couplers was built and commissioned successfully. A 3dB splitter and two new RF couplers were installed. The RF couplers improved design allows better brazing methods, vacuum properties and RF sealing. This design is innovative from two points of view: (a) implementation of two synchronized couplers located in two separated RF cells in a 4-rod RFQ. (b) The ability to run the RFQ in 200-250 kW to accelerate a 5 mA CW deuteron beam by 2.6 MV required for the new modulation design for 1.3 MeV/u. To our knowledge, SARAF RFQ will be the first 4-rod RFQ capable of running a CW deuteron beam at these power densities. This work may contribute to other 4-rod RFQ projects which intend to run CW beams in high dissipation power, like FRANZ and MYRRHA.  
slides icon Slides TH1A04 [6.109 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH1A04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A05 Towards Commissioning of the IFMIF RFQ 698
 
  • A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  All 18 sections of the IFMIF RFQ were completed in summer 2015. A 2 m section (the last three modules and one prototype used as RF termination) were RF tested at LNL at the design value of 90 kW/m in cw conditions. The three 3.3 m long supermodules were sent to Japan in January 2016. The RFQ was installed and tuned with fixed tuners to the nominal field frequency and field distribution. The very high design shunt impedance was achieved.  
slides icon Slides TH1A05 [23.395 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH1A05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR049 Tuning the IFMIF 5MeV RFQ Accelerator 969
 
  • A. Palmieri, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  In order to allow proper operation of the IFMIF RFQ, it is necessary to perform a campaign of RF measurements on the cavity aimed, on one hand, at determining the basic RF parameters (frequency, Q0, etc.), on the other hand at verifying the fulfilment of the voltage law within the specified admitted range (±2% target value, ±4% acceptance value) of any of the perturbative components upon successive tuner settings as predicted by the tuner algorithm. These measurements also involve the determination of the proper depth of the end plates and the positioning and length of the Dipole Stabilizers (if any). In this contribution the tuning procedure and the results of such measurements will be presented for the case of the IFMIF RFQ will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR050 IFMIF RFQ Module Characterization via Mechanical and RF Measurements 972
 
  • L. Ferrari, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • R. Dima, A. Pepato, A. Prevedello, E. Udup
    INFN- Sez. di Padova, Padova, Italy
 
  The RFQ of the IFMIF/EVEDA project is a 9.9 m long cavity able to accelerate a 130 mA deuteron beam from the input energy of 100 keV to the output energy of 5 MeV. Such RFQ operates at the frequency of 175 MHz and is composed of 18 mechanical modules approximately 0.55 m long each. The RFQ realization involves the I.N.F.N. Sections of Padova, Torino and Bologna, as well as the Legnaro National Laboratories (L.N.L.). The metrological measurements via CMM (Coordinate Measuring Machine) provided to be a very effective tool both for quality controls along the RFQ production phases and in the reconstruction of the cavity geometric profile for each RFQ module. The scans in the most sensitive regions with respect to RF frequency, such as modulation, tips, base-vane width and vessel height provided the values of the cavity deviations from nominal geometry to be compared with design physic-driven tolerances and with RF measurements. Moreover, the comparison between mechanical and RF measurements suggests a methodology for the geometric reconstruction of the cavity axis and determines the final machining of the end surfaces of each module in view of the coupling with the adjacent ones. In this paper a description of the meteorological procedures and tests and of the RFQ along its production and assembly phases will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR051 High-Power RF Test of IFMIF-EVEDA RFQ at INFN-LNL 975
 
  • E. Fagotti, L. Antoniazzi, M.G. Giacchini, F. Grespan, M. Montis, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
 
  A partial test at full power and CW duty cycle will be performed at INFN-LNL on the last elements of the IFMIF RFQ, approximately two meters of structure, using a specific electromagnetic boundary element on the low energy end. The aim is to reach, in the RFQ coupled with its power coupler system, after an adequate period of conditioning, cw operation at nominal field level (132 kV between electrodes) for at least two hours without breakdown. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR054 Recent RF and Mechanical Developments for the ESS RFQ 978
 
  • N. Misiara, A. Albéri, G. Bourdelle, A.C. Chauveau, D. Chirpaz-Cerbat, M. Desmons, A.C. France, M. Lacroix, P.-A. Leroy, J. Neyret, G. Perreu, O. Piquet, B. Pottin, H. Przybilski, N. Sellami
    CEA/IRFU, Gif-sur-Yvette, France
 
  The ESS Radio-Frequency Quadrupole (RFQ) is a 4-vane resonant cavity designed at the frequency of 352.21 MHz frequency. It must accelerate and bunch a 70 mA proton beams from 75 keV to 3.62 Mev of energy with a 4% duty cycle. The current 3D design evolved and is currently divided in 5 segments for a total length of 4.54 m. This paper presents a complete radiofrequency (RF) analysis using the ANSYS Multiphysics 3D RF simulating code HFSS and a RFQ 4-wire transmission line model (TLM). It describes the integrated cooling strategy based on a coupling between the RF power losses and the thermo-mechanical physics in order to allow a proper RFQ tuning once under operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR062 Muon Acceleration Using an RFQ 992
 
  • Y. Kondo, K. Hasegawa
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Fukao, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, K. Shimomura
    KEK, Tsukuba, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H-line) at the J-PARC MLF are once stopped in an silica aerojel target and room temperature muoniums are evaporated from the aerogel. They are dissociated with laser (ultra slow muons), then accelerated up to 212 MeV using a linear accelerator. As the first accelerating structure, an RFQ will be used. We are planning to use a spare RFQ of the J-PARC linac for the first acceleration test. For this acceleration test, an degraded muon beam will be used instead of the ultra slow muon sourece. In this paper, present status of this muon acceleration test using the J-PARC RFQ is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR063 RF Design of a Deuteron Beam RFQ 996
SPWR020   use link to see paper's listing under its alternate paper code  
 
  • C.X. Li, W.P. Dou, Y. He, F.F. Wang, Z.J. Wang, X.B. Xu, Z.L. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  In a material irradiation facility in IMP, a RFQ is required for accelerating deuteron beam from 20 keV/u to 1.52 MeV/u. The structure design of the RFQ is drawing on the experience of the RFQ of Injector II of China ADS LINAC. Four-vane structure is adopted and the operation frequency is 162.5 MHz. Inter vane voltage is 65 kV and the Kilpatrick factor is 1.4. Π-mode stabilizing loops are used to move the dipole modes away from the working mode. Slug tuners are used to compensate for capacitance errors induced by machining. Cutbacks and end plate are modified to reach a reasonable field flatness. After the structure design and optimization, the simulation results of the cavity frequency is 162.459 MHz, the power loss is 109 kW. The multiphysics simulations are also performed to determine the frequency shift caused by the shift of the cooling water temperature.  
poster icon Poster THPLR063 [0.971 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR064 Design and Simulation of a High Intensity Heavy Ion RFQ Accelerator Injector 999
SPWR019   use link to see paper's listing under its alternate paper code  
 
  • W. Ma, Y. He, C.X. Li, L. Lu, L.B. Shi, L.P. Sun, X.B. Xu, Z.L. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been developed for Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP), the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing the high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. In this paper, detailed EM design of the LEAF-RFQ will be presented and discussed. Meanwhile, structure error analysis is also studied.  
poster icon Poster THPLR064 [3.021 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR065 Beam Commissioning Status and Results of the FNAL PIP2IT Linear Accelerator RFQ 1002
 
  • J. Steimel, C.M. Baffes, P. Berrutti, J.-P. Carneiro, J.P. Edelen, T.N. Khabiboulline, L.R. Prost, V.E. Scarpine, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
  • A.L. Edelen
    CSU, Fort Collins, Colorado, USA
  • M.D. Hoff, A.R. Lambert, D. Li, T.H. Luo, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
  • V.L. Sista
    BARC, Mumbai, India
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
An H beam was accelerated through a continuous wave (CW) capable, 4-vane, radio frequency quadrupole (RFQ) at Fermilab that was designed and constructed at Berkeley Lab. This RFQ is designed to accelerate up to 10 mA H beam from 30 keV to 2.1 MeV in a test accelerator (PIP2IT). This paper presents results of specification verification and commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR066 Preparation and Installation of IFMIF-EVEDA RFQ at Rokkasho Site 1005
 
  • E. Fagotti, L. Antoniazzi, A. Baldo, A. Battistello, P. Bottin, L. Ferrari, M.G. Giacchini, F. Grespan, M. Montis, A. Pisent, D. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • D. Agguiaro, A.G. Colombo, A. Pepato, L. Ramina
    INFN- Sez. di Padova, Padova, Italy
  • F. Borotto Dalla Vecchia, G. Dughera, G. Giraudo, E.A. Macri, P. Mereu, R. Panero
    INFN-Torino, Torino, Italy
 
  The IFMIF-EVEDA RFQ is composed of 18 modules for a total length of 9.8 m and is designed to accelerate the 125 mA D+ beam up to 5 MeV at the frequency of 175 MHz. The RFQ is subdivided into three Super-Modules of six modules each. The Super-Modules were pre-assembled, aligned and vacuum tested at INFN-LNL and then shipped to Rokkasho (Japan). At Rokkasho site a series of test were performed in order to verify the effect of the shipment on the cavity. The assembly debug, shipment equipment and the sequence of operations are described in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)