1 Electron Accelerators and Applications
1B Energy Recovery Linacs
Paper Title Page
MOP106001 Energy Stability of ERLs and Recirculating Linacs 304
 
  • R.G. Eichhorn, J. Hoke, Z. Mayle
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Energy recovery linacs can be seen as a hybrid between a linear and a circular accelerator. It has been shown in the past that an appropriate choice of the longitudinal working point can significantly improve the energy stability of a recirculating linac. In this contribution we will expand the concept of energy recovery linacs and investigate the energy spread of the beam as well as the recovery efficiency stability which can be a more demanding quantity in a high current ERL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP106012 MESA - an ERL Project for Particle Physics Experiments 313
 
  • F. Hug, K. Aulenbacher, R.G. Heine, B. Ledroit, D. Simon
    IKP, Mainz, Germany
 
  The Mainz Energy-recovering Superconducting Accelerator (MESA) will be constructed at the Institut für Kernphysik of the Johannes Gutenberg University of Mainz. The accelerator is a low energy continuous wave (CW) recirculating electron linac for particle physics experiments. MESA will be operated in two different modes serving mainly two experiments: the first is the external beam (EB) mode, where the beam is dumped after being used with the external fixed target experiment P2, whose goal is the measurement of the weak mixing angle with highest accuracy. The required beam current for P2 is 150 μA with polarized electrons at 155 MeV. In the second operation mode MESA will be run as an energy recovery linac (ERL). The experiment served in this mode is a (pseudo) internal fixed target experiment named MAGIX. It demands an unpolarized beam of 1 mA at 105 MeV. In a later construction stage of MESA the achievable beam current in ERL-mode shall be upgraded to 10 mA. Within this contribution an overview of the MESA project will be given highlighting the latest accelerator layout and the challenges of operation with high density internal gas targets.
Work supported by DFG through cluster of excellence PRISMA, CRC 1044 and RTG 2128
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU3A01 Beam Commissioning Results From the R&D ERL at BNL 374
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, D.M. Gassner, L.R. Hammons, J.P. Jamilkowski, P. K. Kankiya, R.F. Lambiase, V. Litvinenko, R.J. Michnoff, T.A. Miller, J. Morris, V. Ptitsyn, T. Seda, B. Sheehy, K.S. Smith, E. Wang, W. Xu
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, L.R. Hammons, V. Litvinenko, V. Ptitsyn
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
BNL R&D ERL beam commissioning started in June 2014 [*]. The key components of R&D ERL are the highly damped 5-cell 704 MHz superconducting RF cavity and the high-current superconducting RF gun. The gun is equipped with a multi-alkaline photocathode insertion system. The first photocurrent from ERL SRF gun has been observed in November 2014. In June 2015 a high charge 0.5nC and 20 uA average current were demonstrated. In July 2015 gun to dump beam test started. The beam was successfully transported from the SRF gun through the injection system, then through the linac to the beam dump. All ERL components have been installed. In October 2015, SRF gun cavity has been found contaminated during severe cathode stalk RF conditioning. This cavity has been sent for repair and modification for later use in low-energy RHIC electron cooler (LEReC)[**]. LEReC scheduled to start commissioning in early of 2018. We present our results of BNL ERL beam commissioning, the measured beam properties, the operational status, and future prospects.
*) D.Kayran et al., Status and commissioning results of the R&D ERL at BNL. Proc. ERL2015, p. 11-14
**)J. Kewisch et al., ERL for Low Energy Electron Cooling at RHIC (LEReC). Proc. ERL2015, p. 67-71
 
slides icon Slides TU3A01 [12.502 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TU3A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP02 CBETA: The Cornell/BNL 4-Turn ERL with FFAG Return Arcs for eRHIC Prototyping 384
TUPLR002   use link to see paper's listing under its alternate paper code  
 
  • G.H. Hoffstaetter, J. Barley, A.C. Bartnik, I.V. Bazarov, J. Dobbins, B.M. Dunham, R.G. Eichhorn, R.E. Gallagher, C.M. Gulliford, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, D.M. Sabol, E.N. Smith, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • I. Ben-Zvi, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, H. Witte
    BNL, Upton, Long Island, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
 
  Cornell University has prototyped technology essential for any high brightness electron ERL. This includes a DC gun and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current CW cryomodule, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams, e.g. slid measurements for 6-D phase-space densities, a fast wire scanner for beam profiles, and beam loos diagnostics. All these are now available to equip a one-cryomodule ERL, and laboratory space has been cleared out and is radiation shielded to install this ERL at Cornell. BNL has designed a multi-turn ERL for eRHIC, where beam is transported more than 20 times around the RHIC tunnel. The number of transport lines is minimized by using two non-scaling (NS) FFAG arcs. A collaboration between BNL and Cornell has been formed to investigate the new NS-FFAG optics and the multi-turn eRHIC ERL design by building a 4-turn, one-cryomodule ERL at Cornell. It has a NS-FFAG return loop built with permanent magnets and is meant to accelerate 40mA beam to 200MeV.  
slides icon Slides TUOP02 [7.848 MB]  
poster icon Poster TUOP02 [13.981 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP12
Latest Cryogenic Testing of the 2.1 GHz Five-Cell Superconducting RF Cavity with a Photonic Band Gap Coupler Cell  
TUPLR049   use link to see paper's listing under its alternate paper code  
 
  • S. Arsenyev, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • C.H. Boulware, T.L. Grimm, A. Rogacki
    Niowave, Inc., Lansing, Michigan, USA
  • W.B. Haynes, D.Y. Shchegolkov, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  We present results from the latest of the two cryogenic tests with the first multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. After an unsuccessful first cryogenic test, modifications were wade to waveguide coupler joints. In the second test, the high cavity Q-factor was demonstrated at the temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the cavity Q-factor was 1.55*108, in agreement with prediction.  
slides icon Slides TUOP12 [1.046 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR010 Measurements and Analysis of Cavity Microphonics and Frequency Control in the Cornell ERL Main Linac Prototype Cryomodule 488
 
  • M. Ge, N. Banerjee, J. Dobbins, R.G. Eichhorn, F. Furuta, G.H. Hoffstaetter, M. Liepe, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The Cornell Main Linac cryomodule (MLC) is a key component in the CBETA project. The SRF cavities with high loaded-Q in the MLC are very sensitive to microphonics from mechanical vibrations. Poor frequency stability of the cavities would dramatically increase the input RF power required to maintain stable accelerating fields in the SRF cavities. In this paper, we present detailed results from microphonics measurement for the cavities in the MLC, discuss dominant vibration sources, and show vibration damping results. The current microphonics level meets the CBETA requirement of a 36MeV energy gain without applying fast tuner compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR011 Performance of the Novel Cornell ERL Main Linac Prototype Cryomodule 492
 
  • F. Furuta, J. Dobbins, R.G. Eichhorn, M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The main linac cryomodule (MLC) for the future energy-recovery linac (ERL) based X-ray light source at Cornell has been designed, fabricated, and tested. It houses six 7-cell SRF cavities with individual higher order-modes (HOMs) absorbers, cavity frequency tuners, and one magnet/BPM section. Cavities have achieved the specification values of 16.2MV/m with high-Q of 2.0·1010 in 1.8K in continuous wave (CW) mode. During initial MLC cavity testing, we encountered some field emission, reducing Q and lowering quench field. To overcome field emission and find optimal cool-down parameters, RF processing and thermal cycles with different cool-down conditions has been done. Here we report on these studies and present final results from the MLC cavity performance.  
poster icon Poster TUPLR011 [2.389 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR012 HOM Measurements for Cornell's ERL Main Linac Cryomodule 496
 
  • F. Furuta, R.G. Eichhorn, M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, P. Quigley, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The main linac cryomodule (MLC) for a future energy-recovery linac (ERL) based X-ray source at Cornell has been designed, fabricated, and tested. It houses six 7-cell SRF cavities with individual higher order-modes (HOMs) absorbers, cavity frequency tuners, and one magnet/BPM section. All HOMs in MLC have been scanned in 1.8K. The results show effective damping of HOMs, and also agree well with simulation results and the previous HOM scan results on one 7-cell cavity prototype test cryomodule. Here we present detailed results from these HOM studies.  
poster icon Poster TUPLR012 [2.773 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR013 Lifetime Study of CKk2Sb Robust Photo-Cathode for a High Brightness Electron Source 500
 
  • M. Kuriki, Y. Seimiya
    KEK, Ibaraki, Japan
  • L. Guo, K. Moriya, M. Urano, A. Yokota
    HU/AdSM, Higashi-Hiroshima, Japan
  • K. Negishi
    Iwate University, Morioka, Iwate, Japan
 
  CsK2Sb photo-cathode is one of the ideal cathode for accelerators requiring the high brightness electron beam. It can be driven with a green laser which can be generated as SHG from solid state laser. The QE (Quantum Efficiency) of photo-electron emission is as high as more than 10% with 532nm light. In this article, the robustness of the cathode is studied. Two indexes of lifetime regarding to time and extracted charge density were evaluated experimentally. The result shows that the cathode is robust enough for a high brightness accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP04 Measurements of the Beam Break-Up Threshold Current at the Recirculating Electron Accelerator S-DALINAC 751
THPLR001   use link to see paper's listing under its alternate paper code  
 
  • T. Kürzeder, M. Arnold, L.E. Jürgensen, J. Pforr, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: *Supported by the German Federal Ministry for Education and Research (BMBF) under Grant No. 05K13RDA.
Linear accelerators, in particular those with a recirculating design and superconducting cavities, have to deal with the problem of Beam Break-Up (BBU). This instability can limit the maximum beam current in such accelerators. Knowing the effectiveness of prevention strategies is of great interest especially for future accelerators like energy recovery linacs (ERL) which aim for high beam currents. One option is to optimize the cavities and higher order mode couplers of those machines. In addition one may adapt the beam line lattice for further suppressing BBU. The superconducting recirculating accelerator S-DALINAC at the Technische Universität Darmstadt provides electron beams in c.w. for nuclear physics experiments since 1991. As the SRF components were never optimized for higher order mode suppression the S-DALINAC suffers from BBU at relatively low beam currents of a few μA. While those currents are sufficient for most nuclear physics experiments we can investigate BBU with respect to the beam optics. We will report on first measurements of threshold currents at different beam energies of the S-DALINAC. The results of a first test to increase the BBU limit by using skew quadrupoles will be presented.
 
slides icon Slides THOP04 [1.473 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)