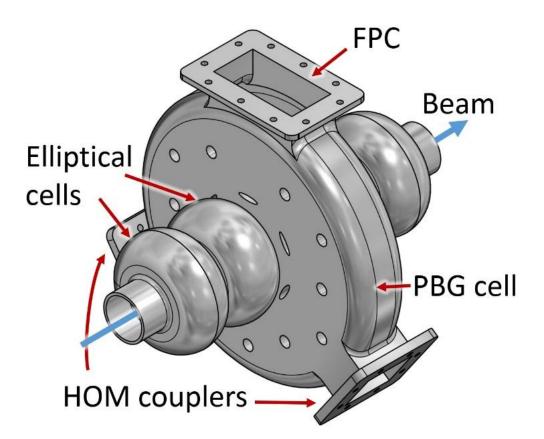

Latest cryogenic testing of the 2.1 GHz 5-cell SRF Cavity with a PBG* Coupler Cell

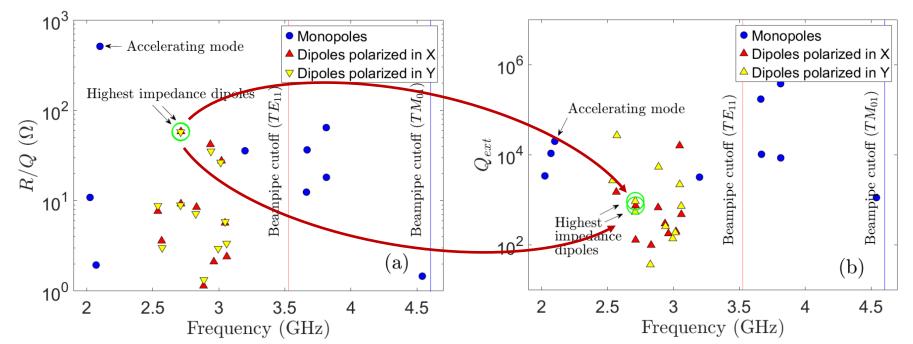


LINAC2016 in Lansing, Sep 27, 2016 S.Arsenyev, R.Temkin, Massachusetts Institute of Technology **E.Simakov**, T.Tajima, D.Shchegolkov, W.B.Haynes, Los Alamos National Lab C.Boulware, A.Rogacki, T.Grimm, Niowave Inc.

* PBG = Photonic Band Gap

Work was supported by the U.S. Department of Energy (DOE) Office of Science Early Career Research Program and a DOE SBIR grant.

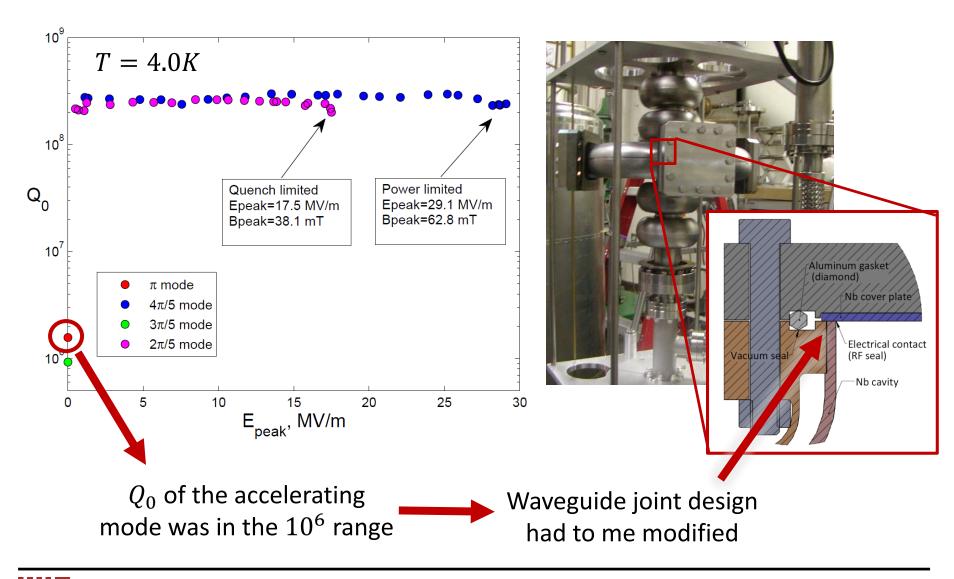
Motivation for the 5-cell SRF PBG cavity

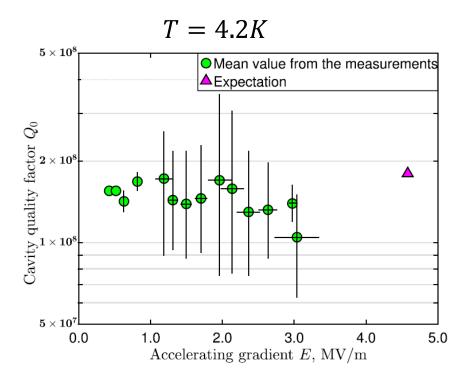


- Beam break-up (BBU) limits max current.
- BBU is caused by parasitic higher order modes (HOMs).
- PBG accelerating cavity provides **HOM suppression**.
- The 5-cell structure with a PBG cell has an increased **real** estate gradient.

Accelerating properties

The PBG design is very similar to 5 elliptical cells, but is about 20% shorter	5 elliptical cells (from H. Wang et al)	5-cell P	PBG cavity
Frequency	0.75 GHz	2.1 GHz	
Shunt impedance R/Q	525 Ω	515 Ω	-2%
Geometry constant G	276 Ω	265 Ω	-4%
Peak surface electric field ratio E_{peak}/E_{acc}	2.50	2.65	+6%
Peak surface electric field ratio B_{peak}/E_{acc}	$4.27 \frac{\text{mT}}{\text{MV}/m}$	$4.48 \frac{\text{mT}}{\text{MV}/m}$	+5%
Length of cavity + couplers	44 cm	36 cm	-19%


HOM damping


Simulated shunt impedances and loaded Q factors for monopole and dipole modes

Loaded Qs are in the range $10^2 - 10^4$, with most dangerous HOMs damped to Q in the order of 10^3 .

First cryogenic tests and low Q_0

Latest cryogenic testing

Mode	β	Simulated Q_0	Measured $Q_0,$ assuming simulated $oldsymbol{eta}$
π/5	0.23	1.5×10^{8}	1.46×10^{8}
2π/5	4.8	1.87×10^{8}	3.21×10^{8}
3π/5	5.9	1.72×10^{8}	3.17×10^{8}
4π/5	9.6	1.87×10^{8}	1.82×10^{8}
π	6.4 🤇	1.81×10^{8}	1.55×10^{8}

- Measured Q_0 of the accelerating mode agreed with expectations.
- No "hard barriers" were observed at gradients up o 3 MV/m.
- The tested cavity is ready to be put into a complete cryomodule assembly.