Author: Ostroumov, P.N.
Paper Title Page
MOOP03 High Gradient Accelerating Structures for Carbon Therapy Linac 44
MOPLR073   use link to see paper's listing under its alternate paper code  
 
  • S.V. Kutsaev, R.B. Agustsson, L. Faillace, E.A. Savin
    RadiaBeam, Santa Monica, California, USA
  • A. Goel, B. Mustapha, A. Nassiri, P.N. Ostroumov, A.S. Plastun
    ANL, Argonne, Illinois, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under contract 0000219678
Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.
 
slides icon Slides MOOP03 [3.497 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOOP03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR028 Alternative Design for the RISP Pre-Stripper Linac 531
 
  • B. Mustapha, Z.A. Conway, M.P. Kelly, P.N. Ostroumov, A.S. Plastun
    ANL, Argonne, Illinois, USA
  • J.-H. Jang, H. Jin, H.J. Kim, J.-W. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This work was supported by the work-for-other grant WFO8550H titled "Pre-conceptual design, cost and schedule estimate of the 18.5 MeV/u Pre-stripper linac for the RISP/IBS"
In a collaborative effort between Argonne's Linac Development Group and the RISP project team at the Korean Institute for Basic Science, we have developed an alternative design for the pre-stripper section of the RISP driver linac. The proposed linac design takes advantage of the recent accelerator developments at Argonne, namely the ATLAS upgrades and the Fermilab PIP-II HWR Cryomodule. In particular, the state-of-the-art performance of QWRs and HWRs, the integrated steering correctors and clean BPMs for a compact cryomodule design. To simplify the design and avoid frequency transitions, we used two types of QWRs at 81.25 MHz. The QWRs were optimized for β ~ 0.05 and ~ 0.11 respectively. Nine cryomodules are required to reach the stripping energy of 18.5 MeV/u. Following the lattice design optimization, end-to-end beam dynamics simulations including all sources of machine errors were performed. The results showed that the design is tolerant to errors with no beam losses observed for nominal errors. However, the robustness of the design could be further improved by a modified RFQ design, better optimized with the multi-harmonic buncher located upstream. This could lead to a significant reduction in the longitudinal beam emittance, offering much easier beam tuning and more tolerance to errors. The proposed design and the simulation results will be presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR068 Progress and Design Studies for the ATLAS Multi-User Upgrade 610
 
  • B. Mustapha, P.N. Ostroumov
    ANL, Argonne, USA
  • A. Perry
    Soreq NRC, Yavne, Israel
 
  Funding: This work was supported by the U.S. DOE Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, a DOE Office of Science User Facility.
The motivations and the concept for the multi-user upgrade of the ATLAS facility at Argonne were presented at recent conferences. With the near completion of the integration of the CARIBU-EBIS for more pure and efficient charge breeding of radioactive beams, more effort is being devoted to study the design options for a potential ATLAS mutli-user upgrade. The proposed upgrade will take advantage of the pulsed nature of the EBIS beams and the cw nature of ATLAS, in order to simultaneously accelerate beams with very close charge-to-mass ratios. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other possible applications. Different beam injection and extraction schemes are being studied and will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2A04
Integration of Superconducting Solenoids in Long Cryomodules  
 
  • S.H. Kim, Z.A. Conway, M. Kedzie, M.P. Kelly, P.N. Ostroumov, T. Reid
    ANL, Argonne, Illinois, USA
  • W. McGhee
    Cryomagnetics, Inc., Tennessee, USA
 
  Superconducting (SC) solenoids provide efficient focusing of ion beams in SC linacs. This talk will discuss design, installation and operational experience of long cryomodules containing multiple SC solenoids. The techniques for the alignment of cavity-solenoid string will be presented. The solenoid assemblies include X-, Y-steering coils and does not require any iron shielding. The studies of SRF cavity properties after the quenching next to the solenoid will be presented.  
slides icon Slides WE2A04 [2.191 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR027 Progress Towards a 2.0 K Half-Wave Resonator Cryomodule for Fermilab's PIP-II Project 906
 
  • Z.A. Conway, A. Barcikowski, G.L. Cherry, R.L. Fischer, B.M. Guilfoyle, C.S. Hopper, M. Kedzie, M.P. Kelly, S.H. Kim, S.W.T. MacDonald, P.N. Ostroumov, T. Reid
    ANL, Argonne, Illinois, USA
  • V.A. Lebedev, A. Lunin
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and Office of High-Energy Physics, Contracts No. DE-AC02-76-CH03000 and DE-AC02-06CH11357.
In support of Fermilab's Proton Improvement Plan-II project Argonne National Laboratory is constructing a superconducting half-wave resonator cryomodule. This cryomodule is designed to operate at 2.0 K, a first for low-velocity ion accelerators, and will accelerate ≥1 mA proton/H beams from 2.1 to 10.3 MeV. Since 2014 the construction of 9 162.5 MHz b = 0.112 superconducting half-wave resonators, the vacuum vessel and the majority of the cryomodule subsystems have been finished. Here we will update on the status of this work and report on preliminary cavity test results. This will include cavity performance measurements where we found residual resistances of < 3 nanoOhms at low fields and peak voltage gains of 5.9 MV, which corresponds to peak surface fields of 134 MV/m and 144 mT electric and magnetic respectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR042 Beam Dynamics Studies for a Compact Carbon Ion Linac for Therapy 946
 
  • A.S. Plastun, B. Mustapha, A. Nassiri, P.N. Ostroumov
    ANL, Argonne, Illinois, USA
  • L. Faillace, S.V. Kutsaev, E.A. Savin
    RadiaBeam, Santa Monica, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under Accelerator Stewardship Grant, Proposal No. 0000219678
Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-end beam dynamics studies which are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A02 Installation and On-Line Commissioning of EBIS at ATLAS 1022
 
  • P.N. Ostroumov, A. Barcikowski, J.A. Clark, C. Dickerson, M.R. Hendricks, Y. Luo, R.C. Pardo, C.E. Peters, M.A. Power, G. Savard, S.I. Sharamentov, R.C. Vondrasek, G.P. Zinkann
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Ion Breeder Upgrade (CARIBU) facility at ATLAS. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly-charged cesium ion source. The EBIS performance meets the breeding requirements to deliver CARIBU beams to ATLAS. EBIS can provide charge-to-mass ratios >=1/7 for all CARIBU beams with breeding times in the range of 6 ms to 30 ms. A record high breeding efficiency of up to 28% into a single charge state of Cs28+ has been demonstrated. Following the offline testing EBIS was moved to the front end of ATLAS where the alignment of EBIS was substantially improved and additional beam diagnostic tools both for electron and ion beams were installed. This paper will discuss EBIS improvements and present the results of on-line commissioning.
 
slides icon Slides FR1A02 [7.717 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-FR1A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MO1A01 The FRIB Superconducting Linac - Status and Plans 1
 
  • J. Wei, H. Ao, S. Beher, N.K. Bultman, F. Casagrande, C. Compton, L.R. Dalesio, K.D. Davidson, A. Facco, F. Feyzi, V. Ganni, A. Ganshyn, P.E. Gibson, T. Glasmacher, W. Hartung, L. Hodges, L.T. Hoff, H.-C. Hseuh, A. Hussain, M. Ikegami, S. Jones, K. Kranz, R.E. Laxdal, S.M. Lidia, G. Machicoane, F. Marti, S.J. Miller, D.G. Morris, A.C. Morton, J.A. Nolen, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, G. Pozdeyev, T. Russo, K. Saito, G. Shen, S. Stanley, H. Tatsumoto, T. Xu, Y. Yamazaki
    FRIB, East Lansing, USA
  • K. Dixon, M. Wiseman
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • H.-C. Hseuh
    BNL, Upton, Long Island, New York, USA
  • M.P. Kelly, J.A. Nolen
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  With an average beam power two orders of magnitude higher than operating heavy-ion facilities, the Facility for Rare Isotope Beams (FRIB) stands at the power frontier of the accelerator family. This report summarizes the current design and construction status as well as plans for commissioning, operations and upgrades.
Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
 
slides icon Slides MO1A01 [48.813 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MO1A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR029 FRIB HWR Tuner Development 535
 
  • S. Stark, A. Facco, S.J. Miller, P.N. Ostroumov, J.T. Popielarski, K. Saito, B.P. Tousignant, T. Xu
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • S.M. Gerbick, M.P. Kelly
    ANL, Argonne, USA
 
  Funding: * This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University
During the last two years the HWR pneumatic tuner development at FRIB evolved from the first prototypes to the final production design. A lot of warm testing and several cryogenic integrated tests with cavity were performed to optimize the tuner features. The main challenges included the bellow bushings binding and very tight space limitations for the assembly on the rail. The final design, based on the acquired experience, was prepared in collaboration with ANL and entered the preproduction phase.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2A02 FRIB Cryomodule Design and Production 673
 
  • T. Xu, H. Ao, B. Bird, N.K. Bultman, E.E. Burkhardt, F. Casagrande, C. Compton, J.L. Crisp, K.D. Davidson, K. Elliott, A. Facco, V. Ganni, A. Ganshyn, W. Hartung, M. Ikegami, P. Knudsen, S.M. Lidia, I.M. Malloch, S.J. Miller, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, S. Shanab, G. Shen, M. Shuptar, S. Stark, J. Wei, J.D. Wenstrom, M. Xu, Y. Xu, Y. Yamazaki, Z. Zheng
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • M.P. Kelly
    ANL, Argonne, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB), under con-struction at Michigan State University, will utilize a driver linac to accelerate stable ion beams from protons to ura-nium up to energies of >200 MeV per nucleon with a beam power of up to 400 kW. Superconducting technology is widely used in the FRIB project, including the ion sources, linac, and experiment facilities. The FRIB linac consists of 48 cryomodules containing a total of 332 superconducting radio-frequency (SRF) resonators and 69 superconducting solenoids. We report on the design and the construction of FRIB cryomodules.
 
slides icon Slides WE2A02 [3.823 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE2A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC013 Design of a FRIB Half-Wave Pre-Production Cryomodule 795
 
  • S.J. Miller, H. Ao, B. Bird, G.D. Bryant, B. Bullock, N.K. Bultman, F. Casagrande, C. Compton, A. Facco, W. Hartung, J.D. Hulbert, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, M. Shuptar, J. Simon, S. Stark, B.P. Tousignant, J. Wei, J.D. Wenstrom, K. Witgen, T. Xu, Z. Zheng
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • M.P. Kelly
    ANL, Argonne, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
The driver linac for the Facility for Rare Isotope Beams (FRIB) will require the production of 48 cryomodules (CMs). In addition to the β=0.085 quarter-wave CM, FRIB has completed the design of a β=0.53 half-wave CM as a pre-production prototype. This CM will qualify the performance of the resonators, fundamental power couplers, tuners, and cryogenic systems of the β=0.53 half-wave design. In addition to the successful systems qualification; the β=0.53 CM build will also verify the FRIB bottom up assembly and alignment method on a half-wave CM type. The lessons learned from the β=0.085 pre-production CM build including valuable fabrication, sourcing, and assembly experience have been applied to the design of β=0.53 half-wave CM. This paper will report the design of the β=0.53 half-wave CM as well as the CM interfaces within the linac tunnel.
 
poster icon Poster THPRC013 [0.954 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)