

FRIB Cryomodule Design and Production

Ting Xu

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- FRIB Project
- FRIB Cryomodule design
- Cryomodule production status
- Summary

FRIB Project Overview

- 400 kW beam power (5 x10^{13 238}U/s) for all ions from 200 MeV/u superconducting heavy-ion driver linac
- Produce rare isotope beams by fragmentation of fast heavy-ion beams, gas stopping, reacceleration
- DOE/MSU jointed project under Cooperative Agreement, project cost shared by both, total cost \$730M, and + \$300M from MSU
- Accelerator system construction(CD3-b) started October 2014
- Early beam commissioning of the Front End to be started in 2017 – 2020
- Final completion (CD4) in 2022

Large Scale of low β Superconducting Linac 332 SRF cavities from β =0.041 to 0.53, six type cryomodules, one cavity one RF source (semiconductor amp.), high gradient CW operation at 2K

T. Xu. Sep 2016 Linac 2016, Slide 4

FRIB SRF Components

Cavities, FPCs, Tuners, Magnetic shields, and solenoid packages

Quarter Wave Cold Masses

		Number of Cryomodules	Number of Cavities	Number of Solenoids
$\beta = 0.041$	Accelerating Cryomodules:	3 + 1 spare	12 + 4 spare	6 + 2 spare
$\beta = 0.085$	Accelerating Cryomodules:	11 + 1 spare	88 + 8 spare	33 + 3 spare
	Matching Cryomodules:	3 + 1 spare	12 + 4 spare	-

Half Wave Cold Masses							
$\beta = 0.29$	Accelerating Cryomodules:	12	72	12			
$\beta = 0.53$	Accelerating Cryomodules:	18	144	18			
	Matching Cryomodules:	1	4	-			

TOTAL	48 + 3 spare	332 + 16 spare	69 + 5 spare
-------	---------------------	----------------	--------------

Novel Bottom-up Cryomodules Design Approach

- Resonators operate at 2 K and magnets at 4.5 K and are both supported from the bottom to facilitate alignment
- Cryogenic system is decoupled from coldmass string to isolate vibration to minimize the microphonics
- Optimized and integrated with cryo-distribution
 - Bayonet interface to allow cryomodule be cooldown/warmup and serviced independently
 - 2K-4K heat exchanger inside module to maximize 2K efficiency
- Single layer "local" magnetic shield to be cost effective and less sensitive to magnet operation
- Use common cryomodule designs principles for all six cryomodule types
 - Support rails, cryogenic circuit, thermal shield, vacuum vessel

Cryogenic System

Cryomodule Design Near Completion!

- All six modules using the same bottom-up design approach
- Last design package
 0.29 module will be done by Mar 2017
- All cryomodules share large portion of common components to simplify design and facilitate fabrication.
- Collaborate with JLAB on cryomodule design (β=0.041 and β=0.29)
- Collaborate with ANL on coupler and tuner design

β**=0.041**

β**=0.085**

 β =0.085 Matching

β**=0.29**

β**=0.53**

 β =0.53 Matching

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

T. Xu, Sep 2016 Linac 2016 , Slide 7

FRIB Cryomodule Alignment

- Rigid baseplate provide stable and reliable platform for the cold mass
- Alignment of cold string is achieved by control stack tolerance of cold mass and baseplate.
- No post assemble alignment adjustment needed
- Rails are made of 316L and annealed before final machining to minimize distortion during fabrication and cool down.

Cryomodule Alignment Survey Results.

Module	Resona	ator	Solenoid			
	Transverse (mm)	Vertical (mm)	Transverse (mm)	Vertical (mm)		
SCM801	0.449	0.535	0.305	0.433		
SCM802	0.37	0.31	0.20	0.26		
SCM803	0.44	0.25	0.15	0.21		
SCM401	0.25	0.52	0.26	0.07		
SCM402	0.14	0.13	0.24	0.13		
SCM501	0.807	0.71	0.106	0.096		

* Cool down error is projected to be <0.33 mm

U.S. Department of Energy Office of Science Michigan State University

Cryogenic System

- Two primary cooling loop: cavity (2K) and SC magnets (4.5K) to allow independent cool down and warm up. Thermal syphon design allow flow to be self regulated.
- 50K Parallel cooling for FPC intercept
- Cryogenic support system designed to allow cryogenic piping to be supported from top to decouple from cold mass
- Economic 2K-4K heat exchanger (finned tube heat exchangers) tailored for FRIB cryomodule
- Cool down headers outside vacuum vessel to simply cryomodule internal design and allow common design

Dedicated SRF Infrastructure to Support FRIB Cryomodule Production

- All critical SRF tasks are performed onsite
- Functionalities of the SRF Highbay
 - Acceptance inspection
 - Dimensional inspection by CMM
 - Cold shock test, Leak check
 - Cavity processing and assembly
 - Large cleanroom
 - Cavity etching (BCP) system
 - Robotic high pressure rinsing system
 - Ultrapure water system
 - Hydrogen degassing furnace
 - Demagnetizing SRF components
 - Cavity vertical test system,
 - 3 Dewars and 4 cold inserts
 - Cold mass assembly
 - Cryogenic system (Dedicated 900W helium refrigerator, helium purification and 2K system)

Production Workflow Ramped Up

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Cavity Production & Test Status

- 40% of total cavities (128) for project received (0.041QWR delivery completed)
- •59% (76) cavities certified to be installed on cold mass
- Averaged 2 tests per week since 6/2015 with maximum rate at one test per day
- Less than 20% rework rate
- 4% reject to vendor for repair or rework
 - Welding issue, dimensional issue and threads issue
- Project to receive all cavities by end of 2017

Facility for Rare Isotope Beams

Cavity Performances Exceed FRIB Requirements

Df/dP (Hz/mBar)

LFD (Hz/(MV/m)²)

☑ -2.7

☑ -3

☑ -1.85

☑ -2.9

☑ -2.2

☑ -5

☑ -6.7

☑ -4

T. Xu, Sep 2016 Linac 2016, Slide 1	13
-------------------------------------	----

Cold mass Production Status

- 7 cold mass have been completed
 3 β=0.041, 3 β=0.085, 1β=0.53
- Developed procedures to tuning cavity frequency
 - QWR
 - » Puck height, differential etching
 - HWR

» Differential etching, virtual welding

Cavity clean remove and installation

FRIB Cryomodule Schedule

Cryomodule Assembly Area

- 4 Cryomodule Assembly bays setup
- Module is fix during the whole assembly process
- Acceptance and load area
- 2 cryomodule test bunkers by end of this month
- Cryomodule components are breakdown so that subsystem can be pre-fab and out-source

- Test bunker #1 at East highbay
- Commissioned 2015
- 3 QWR cryomodule has been tested in this bunker

- Test bunker #2 at SRF highbay
- Project to be done by end of Sep 2016
- First module to be tested in this bunker will be the preproduction 0.53 HWR

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

T. Xu,

Cryomodule Production Status

All Cryomodule major procurements are awarded

- 0.041 Cryomodule0.085 Cryomodule0.29 Cryomodule0.53 Cryomodule
- 95
 97
 97
 97
 % Awarded
 65
 % Awarded
 87
 % Awarded
- Cryomodule production ramp up
 - Four cryomodules have been assembled
 - 2 cryomdoule tested and certified
 - LS1 cryomodules are projected to be done by 2017
 - All cryomodules will be done by 2019.

First module is completed within 6 weeks after receiving cold mass!

Extended test (5 Month) on FRIB #1 Validate system by system

- Cavity gradient (Requirement 5.6 MV/m)
 - Result: Eacc \geq 6 MV/m at 4 K, meets FRIB specifications
- Dynamic Loss (requirement 3.85 W,

Q₀ =1.8 x 10⁹ at 2 K)

- Result: 2.8 W, Q_0 =2.5 x10⁹ in average at 2 K with ~ 40 % margin for FRIB spec.
- No Q-degradation by cold mass assembly
- Coupler and tuner work well
- All cavities are locked in spec at 4.5K
- Cryogenics system is very stable throughout test period

CAVITY	AMPL	ITUDE	PH/	ASE	BW	FORWARD POWER		FORWARD PHASE		DETUNE		
#	Pk-Pk (%)	RMS (%)	Pk-Pk (deg)	RMS (deg)	BW (Hz)	Pnom (W)	Pave (W)	Pmax (W)	Pk-Pk (deg)	RMS (deg)	Pk-Pk (Hz)	rms
1					20.2	487						
2	0.64	0.05	0.58	0.07	38.6	931	1005	1552	68	7.7	29.2	3.3
3	0.08	0.01	0.09	0.01	43.6	1052	1163	1274	28	1.5	13.4	0.7
4	0.09	0.01	0.25	0.03	37	893	1076	1318	28	2.9	11.5	1.2
5	0.26	0.01	0.53	0.07	24.8	598	488	858	72	7.9	19.6	2.2
6	0.09	0.01	0.09	0.01	27.1	654	650	681	9	1.4	2.7	0.4
7	0.06	0.01	0.31	0.02	26.5	639	702	835	23	2.1	6.8	0.6
8	0.14	0.01	0.32	0.04	26.3	634	645	924	49	5.7	14.2	1.7
Average	0 19 +0 21	0 02 +0 02	0.31	0.04	30 5 +8 1	736	818	1063	40 +24	4.1	139+86	14+10
Average	0.13 10.21	0.02 10.02	±0.19	±0.03	50.5 ±0.1	±196	±259	±318	40 124	±2.9	10.9 10.0	1.4 11.0
Spec	2.00	0.25	2.00	0.25	40.0				90		< 20	< 2.25

Solenoid Operation and Magnetic Shield Validation

- Successful robust solenoid package operation with cavities
 - Solenoids ramped to full fields without training quench.
 - Integrated test with cavity at 5.6 MV/m at 4.5 K.
 - Vapor cooled current leads operate well, flow controller regulates the lead voltages stable.
- Magnetic shield material with µ > 9000 at cryogenic temperature meets FRIB requirement: Bin < 15 mG
- Validated: Mu-metal against remnant field for FRIB local magnetic shield design

C#3

C#2

C#4

Mu-metal Shield

S#1

Beam

direction

THPRC023

C#1

Dynamic heat load measurement at 2 K for each cavities

U.S. Department of Energy Office of Science Michigan State University

S#2

HWR FPC Prototype Qualified and FRIB Choice MPF for Production

Integrated tests with baseline FPC

- Verify RF control with pneumatic tuner up to 7.4 MV/m with baseline coupler @ 4K
- Confirm 30 Hz cavity bandwidth
- Integrated test with MPF couplers
 - Confirm no multipacting barriers with MP-free coupler
 - Confirm RF control equivalent to baseline FPC

Baseline FPC conditioning

- 9 out of 10 Baseline Model are conditioned but has heavy multipacting heating at 9 -10 kW (traveling wave model) and very long conditioning time.
- #9 can not reach vacuum goal during after 140 hour conditioning

MPF FPC conditioning

- No multipacting heating observed
- Quick conditioning time

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

β=0.53 Preproduction Module Status

- Cryomodule will be ready for install to SRF test bunker at end of Sep 2016
- Key technical cold test tasks
 - High Q performance
 - Local shielding performance
 - Narrow bandwidth 30Hz LLRF control in cryomodule environment
 - Pneumatic tuner long term stability
 - Cavity frequency goal
 - Cryogenic system performance
- Validate major components to allow production start
- Last technical milestone for SRF

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science Michigan State University

Summary

- Success of FRIB-1 cryomodule is important milestone for production start.
- FRIB cryomodule design will be completed by Mar 2017
- FRIB cryomodule is in production phase and ramp up
- 0.53 preproduction online testing will be important milestone to complete technical campaign of FRIB cryomodule
- SRF highbay is fully operational and reach the design capability for cavity processing and cold mass assembly

East Lansing, MI USA 25-30 September

