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OUTLINE

= [ntroduction

= Superconducting (SC) Solenoids in ‘Low-beta’ Cavity Cryomodules

» Experimental Study with SC Solenoids at ANL
— Alignment inside the Cryomodule
— Impact of Stray Magnetic Fields on the SRF Cavity

= Summary
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INTRODUCTION

= Superconducting (SC) Solenoid in Low-beta Cavity Cryomodule
— lon linacs in the low-beta regime require use of focusing elements between
every ~1-4 cavities to minimize emittance growth and beam loss
— Using SC solenoids, multiple cavities can be packed into one cryomodule: a
cost-effective way to build and maintain long linacs
— SC solenoid with fields up to ~10 T are well established, however, important
issues need to be addressed for applications in real cryomodules:
« Alignment after cooldown
« The impact of stray magnetic fields on the SRF cavity
— We present experimental studies at ANL using
« 9T SC solenoids in the ATLAS Intensity Upgrade Cryomodaule,
« 6 T SC solenoids with integrated dipole steering coils in the Proton
Improvement Plan 2 Half-Wave Resonator (PIP-Il HWR) Cryomodule

for Fermilab
(THPLRO027: Z.A. Conway, “Progress Towards a 2.0 K Half-Wave Resonator Cryomodule for Fermilab’s
PIP-Il Project”)
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SC SOLENOIDS IN CRYOMODULES

Currently operational/ under commissioning relatively lower intensity
ion accelerators (beam current < ~1 mA)

ATLAS Energy Upgrade Cryomodule:
A9 T Solenoid with
7x =0.15 109 MHz QWRs

ISAC-Il SSC | Cryomodule:

A9 T Solenoid with | _
6X B=011 106 MHz QWRs HIE-ISOLDE ngh Beta CryomOdUIe:
(Courtesy of R.E. Laxdal) A 8T Solenoid with
. S 5x $=0.10 101 MHz QWRs

(Courtesy of W. Venturini Delsolaro)
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SC SOLENOIDS IN CRYOMODULES (continued)

Under construction/planned high intensity ion accelerators
(beam current > ~1 mA)

FRIB HWR Cryomodaule: PIP-lIl SSR1 Cryomodule:
A Solenoid with 8x =0.53 322 MHz SSRs 4x Solenoids with 8x $=0.22 325 MHz SSRs
(Courtesy,of J. Wei) (Courtesy of L. Ristori)
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IFMIF LIPAc Cryomodule : IMP ADS HWR010 Cryomodule :
8x Solenoids with 8x =0.11 175 MHz HWRs 6x Solenoids with 6x $=0.1 162 MHz HWRs

(Courtesy of H. Dzitko) (Courtesy of Y. He)
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ALIGNMENT REQUIREMENTS

= Alignment is necessary to suppress emittance growth and reduce beam
loss

Alignment Tolerances
ATLAS Intensity

PIP-Il HWR Cryomodule

SeRilitle (;J %gv:’aRdse fzyg(’)'l‘:::iﬁ; (8 HWRs + 8 Solenoids)
XIY +0.25 mm RMS +0.25 mm RMS
Z 1 mm RMS 0.5 mm RMS
Pitch/Yaw/Roll +0.1° RMS +0.1° RMS

* These are for solenoids; Cavities have 4 times looser transverse/angular tolerances

= The other high intensity ion linacs require similar tolerances:

Alignment lon Species Beam Energy and Current
Tolerances

FRIB 1 mm ptoU 200 MeV/u, 0.7 mA (U)
IFMIF 1 mm pord 9 MeV, 125 mA (d)

AAAAAAAAAAAAAAAAAA



KINEMATIC MOUNT

ATLAS Intensity Upgrade Cryomodule: Kelvin Type Kinematic Coupling
4x 9 T Solenoids with for Solenoid/Cavity Mount

8x B=.077 72 MHz QWRs}|

Courtesy of Hale (2001)
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ALIGNMENT RESULTS

Room Temperature Fine Alignment Measurements of Shifts on Cooldown
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IMPROVEMENTS FOR THE NEXT CRYOMODULE

PIP-ll HWR Cryomodule

» Machined stock Ti bars are used for the strongback. Less effort is required for the
room temperature alignment with the improved position adjustment system.

= A Maxwell kinematic coupling system is used for cavity and solenoid mounts. The
beam axis will not have thermally-induced motion on the kinematic mount plane.

» 4 targets will be attached per each cavity and solenoid. Changes in pitch and yaw
can be monitored on cooldown.

Maxwell-type Kinematic Mount
(Courtesy of Hale 2001)




MAGNETIC AXIS OF SOLENOIDS

Measured the magnetic axis referenced to the mechanical axis at cold

= Angular scan of the radial component of the fringe field
— B, « r (r: radial coordinate)
— The fractional oscillation amplitude represents the radial offset and the
‘Phase’ represents angular offset of the magnetic axis

Rotating rod: Bakelite Rotation guide: 13000 o Z=-64mm
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SC SOLENOID WITH INTEGRATED DIPOLE
STEERING COILS

= Allows to additionally improve packing Solenoid Field Bg 6 T max
efficiency of an accelerator Solenoid [Bg2-dz\% 3.6 T2m max
= 8 Solenoids are assembled in the PIP-II Current 82 A max
HWR Cryomodule together with 8x =0.11 X7y Dipole Field B, 0.2 T max
162.5 MHz HWRs Steering [By-dz® 0.037 T-m max
2 Current 50 A max
Bore Diameter of Housing 35 mm

(1) f; = 0.13m and

(2) A6 = 0.1 rad for § = 0.11 proton
Bucking coil

Main coil Helium port, electrical leads

’ -‘.j‘- 3
Alignment/support

bracket
o

Cooldown port

Beam port

Dipole Steering coils



POSSIBLE IMPACTS ON THE CAVITY DUE TO
STRAY MAGNETIC FIELDS

» High Stray Magnetic Field on the Cavity Niobium Surface
— Increase RF losses and reduces thermal breakdown (quench) threshold of
the cavity
— Solution: Use return (bucking) coils to minimize stray field

= Magnetization of Materials in the Vicinity of the Cavity
— Materials around the cavity are magnetized by the solenoid field, if not highly
non-magnetic
— The magnetic field generated by such magnetized materials can be trapped
on the cavity niobium surface during cooldown; this will leads to increase of
the residual resistance (Ry = 1.2nQl @ H,,; = 10mG, f = 162 MHz)
— Solution: Degaussing cycles of the solenoid to prevent magnetization

= Magnetic Flux Trapped due to Cavity Quench
— Cavity quench may happen in the presence of the solenoid field
— Magnetic flux produced by the solenoid can be trapped through the ‘normal
conducting opening’ on the cavity surface, if solenoid field at such location is
not negligible
— At ANL, we measured this effect to see how strong it is in our cavity
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SOLENOID FIELD WITH BUCKING COIL

Minimization of the stray field

= Stray field on the cavity niobium surface is much smaller than the critical field of
niobium so no measurable change in the cavity quench limit

» Used 304 stainless steel housing; No iron shield or return yoke is used

Stray Field Map in PXIE Cryomodule On-axis Field
(Schematic) (Simulation and Measurement)
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72 MHz

D EGAU SSI N G QWR Magnetic field probe
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= A strong source of measured 30
magnetization is the superconducting 15
NbTi. This disappears upon warm up.
Even though there is small contribution G 0
from magnetic materials, magnetization is £ -15
reduced by degaussing a 0
= A manual survey after opening the
cryostat indicated no measureable 45
magnetization after running the -60
degaussing cycle -80 -60 -40 -20 O 20 40 60 80
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CAVITY QUENCH IN THE PRESENCE OF

SOLENOID FIELD

No Measurable Change in Residual Resistance

» For the indicated orientation, no change in RF surface resistance was measured
with a sensitivity of £0.1 nOhm when cavity was quenched and recovered back
to the superconducting state in the presence of the solenoid field

PXIE Solenoid Assembled Together with the HWR in
a Test Cryostat, Similar to the PXIE HWR Cryomodule
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Measured Surface Resistance in
the Presence of Solenoid Field

» Bofore cavity quenched
o After cavity quenched
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POSSIBLE REASONS FOR Q PRESERVATION

Courtesy of M. Checchin, “Quench-Induced
Degradation of the Quality Factor in Superconducting

= Other studies show magnetic flux Resonators (2016) e
can be trapped through the normal :—’} i S Latet H (mOe) g
conducting ‘opening’ when cavity is _} ST 1 g | i |
quenched in the presence of the = i g e
magnetic field R P < ot - ’\ .

I €D .- S AN o\
2 i - o : 4~ : : o ]
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» The Q preservation in our cavity is ?E’ t et L/ © o

due to a combination of T VAN
— Low stray fields Te sTer
— The favorable location of the R R
quench and normal conducting
‘opening’
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SUMMARY AND CONCLUDING REMARK

= Alignments of the SC solenoids
— Achieved alignments within £0.25 mm RMS at cold

» The SC Solenoid with the integrated dipole steering coils
— Stray field is sufficiently low so no measurable changes in the cavity quench
limit was found
— Degaussing successfully demagnetized materials magnetized by the peak
solenoid field
— In our HWR, it is found the Q is preserved when the cavity is quenched in the
presence of the solenoid field

» Based on these results, SC solenoids are suitable focusing magnets in a long
cryomodule
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