Keyword: scattering
Paper Title Other Keywords Page
SUPB001 Analyzing Surface Roughness Dependence of Linear RF Losses SRF, superconductivity, niobium, radio-frequency 1
 
  • C. Xu, M.J. Kelley
    The College of William and Mary, Williamsburg, USA
  • C.E. Reece
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such as Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.
 
 
MOPLB12 X-Ray Local Energy Spectrum Measurement on Tsinghua Thomson Scattering X-Ray Source (TTX) simulation, electron, laser, photon 171
 
  • Y.-C. Du, J.F. Hua, W.-H. Huang, C.-X. Tang, L.X. Yan, H. Zha, Z. Zhang
    TUB, Beijing, People's Republic of China
 
  Thomson scattering X-ray source, in which the TW laser pulse is scattered by the relativistic electron beam, can provide ultra short, monochromatic, high flux, tunable polarized hard X-ray pulse which is can widely used in physical, chemical and biological process research, ultra-fast phase contrast imaging, and so on. Since the pulse duration of X-ray is as short as picosecond and the flux in one pulse is high, it is difficult to measure the x-ray spectrum. In this paper, we present the X-ray spectrum measurement experiment on Tsinghua Thomson scattering. The preliminary experimental results shows the maximum X-ray energy is about 47 keV, which is agree well with the simulations.  
slides icon Slides MOPLB12 [1.311 MB]  
 
MOPB018 Analyzing Surface Roughness Dependence of Linear RF Losses SRF, superconductivity, niobium, radio-frequency 210
 
  • C. Xu
    The College of William and Mary, Williamsburg, USA
  • M.J. Kelley, C.E. Reece
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such as Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.
 
 
MOPB089 X-Ray Local Energy Spectrum Measurement at Tsinghua Thomson Scattering X-Ray Source (TTX) simulation, electron, laser, photon 383
 
  • Y.-C. Du, J.F. Hua, W.-H. Huang, C.-X. Tang, L.X. Yan, H. Zha, Z. Zhang
    TUB, Beijing, People's Republic of China
 
  Thomson scattering X-ray source, in which the TW laser pulse is scattered by the relativistic electron beam, can provide ultra short, monochromatic, high flux, tunable polarized hard X-ray pulse which is can widely used in physical, chemical and biological process research, ultra-fast phase contrast imaging, and so on. Since the pulse duration of X-ray is as short as picosecond and the flux in one pulse is high, it is difficult to measure the x-ray spectrum. In this paper, we present the X-ray spectrum measurement experiment on Tsinghua Thomson scattering. The preliminary experimental results shows the maximum X-ray energy is about 47 keV, which is agree well with the simulations.  
 
MOPB098 Planning for Experimental Demonstration of Transverse Emittance Transfer at the GSI UNILAC through Eigen-Emittance Shaping emittance, quadrupole, coupling, simulation 404
 
  • C. Xiao, O.K. Kester
    IAP, Frankfurt am Main, Germany
  • L. Groening
    GSI, Darmstadt, Germany
 
  The minimum transverse emittances achievable in a beam line are determined by the two transverse eigen-emittances of the beam. For vanishing interplane correlations they are equal to the transverse rms-emittances. Eigen-emittances are constants of motion for all symplectic beam line elements, i.e. (even tilted) linear elements. To allow for rms-emittance transfer, the eigen-emittances are changed by a non-symplectic action to the beam, preferably preserving the 4d-rms-emittance. Unlike emittance swapping the presented concept will allow transforming a beam of equal rms-emittances into a beam of different rms-emittances while preserving the 4d-rms-emittance. This contribution will introduce the concept for eigen-emittance shaping and rms-emittance transfer at an ion linac. The actual work status towards the experimental demonstration of the concept at the GSI UNILAC is presented.  
 
TUPB041 Scattering of  H Stripped Electrons  from SEM Grids and Wire Scanners at the CERN LINAC4 electron, simulation, linac, polarization 567
 
  • F. Roncarolo, E. Chevallay, M. Duraffourg, G.J. Focker, C. Heßler, U. Raich, VC. Vuitton, F. Zocca
    CERN, Geneva, Switzerland
  • B. Cheymol
    ESS, Lund, Sweden
 
  At the CERN LINAC4, wire grids and scanners will be used to characterize the H beam transverse profile at different stages along the acceleration to 160 MeV. The wire signal will be determined by the balance between secondary emission and number of charges stopped in the wire, which will depend on the wire material and diameter, the possible choice of biasing (DC) the wires and the beam energy. The outermost electrons of H ions impinging on a wire are stripped in the first nanometers of material. A portion of such electrons are scattered away from the wire and can reach the neighboring wires.  In addition, scattered electrons hitting the surrounding beam pipe generate secondary electrons that can also perturb the measurement. Monte Carlo simulations, analytical calculations and a laboratory experiment allowed quantifying the amount of scattering and the scattered particles distributions. The experiment was based on 70 keV electrons, well reproducing the case of 128 MeV H ions. For all the LINAC4 simulated cases the predicted effect on the beam size reconstruction results in a relative error of less than 5%.  
 
TUPB091 176 MHz Solid State Microwave Generator Design impedance, linac, simulation, resonance 672
 
  • A.Yu. Smirnov, E.V. Ivanov, A.A. Krasnov, K.I. Nikolskiy, N.V. Tikhomirova
    Siemens Research Center, Moscow,, Russia
  • O. Heid, T.J.S. Hughes
    Siemens AG, Erlangen, Germany
 
  This paper concerns the R&D work upon design of a compact RF amplifier to be used for superconducting CW cavities. The machine under development will operate at 176 MHz with output power of 25 kW in continuous wave regime. It consists of 50 push-pull PCB modules (approx. 500W output power each), connected in parallel to several radial filter rings, which both allow class-F operation and combine the power from the modules, delivering it to a single 50 Ω coax cable. The CST simulations ad the design of 324 MHz test prototype are presented.