SUPERCONDUCTING LINAC AND ASSOCIATED DEVELOPMENTS AT IUAC, DELHI

Amit Roy

Inter-University Accelerator Centre

New Delhi, India

Layout of Pelletron and Superconducting Linac Booster

UAC

Superconducting Linac booster for Pelletron Nb QWR developed in collaboration with ANL, USA Subsequent in-house technology development

High Current Injector

Novel Electron Cyclotron Resonance ion source. Room temperature RFQ, DTL, Low beta SRF cavity

Other Resonator Development Single Spoke Resonator 1.3 GHz TESLA type cavity

Inside of a Linac Module

Nb QWR cavity, 97 MHz, $\beta = 0.08$

UAC

All three Linac Cryostats in Beam Line

UAC

Accelerating gradient E at 4.2 K achieved in different QWRs

Resonator Q as a function of the accelerating gradient E $\,$ at 4.2 K

Problems encountered:

To lock resonators at fields @ 6 watts, due to presence of microphonics, power > 300 watts was required.

(a) 300 watts, cable melting, heating up of the drive coupler causing increased cryogenic loss.

Solution: Frictional damping using SS balls. Cooling of drive coupler

Recent Improvements:

More efficient vibration damping using SS balls of mixed diameters.

An alternate tuning mechanism using piezo actuators has been tried out successfully.

An additional cooling mechanism for power coupler has been successfully tested.

A commercial high temperature cable (HP226, 275 C) (100% shielded) tested successfully with higher power.

Additional Cooling of drive coupler

UAC

Superconducting Linac and Associated Developments at IUAC, LINAC12, Tel Aviv, Sep 13, 2012

Frequency fluctuation happens in two time scale – Fast – due to presence of microphonics, Slow – due to Helium pressure fluctuation etc.

Piezo Tuner

Piezo-Crystal specifications: Model – P-844.60, Voltage: -20 to 100 V, Open loop travel: 90 μm,

Tuning range by

Gas controlled tuner (Present)			Piezo-crystal tuner (new)			mechanical movement: ~ 150 kHz at RT
Response Time	Frequency Variation	Amplifier Power	Response Time	Frequency Variation	Amplifier Power	 ~ 100 kHz at 4.2K Tuning range by Piezo control: ~ 2.5 kHz at RT ~ 900 Hz at 4.2K POSTER TUPB033 B K SAHUlet al
Seconds	97,000, 000 ± 50 Hz	100 + 80 watts	~ 50 msec	97,000, 000 ± 2.5 Hz	100 + 4 watts	

ECR based High Current Injector for LINAC

Superconducting Linac and Associated Developments at IUAC, LINAC12, Tel Aviv, Sep 13, 2012

9

UAC

PKDELIS ECR source and emittance measurement

UAC

Plasma potential measurement

RFQ Prototype with Cu plated ss tank, Cu vanes tested upto 26 kW

ЛAC

Chamber

🛈 Input 180 keV/u

- Final energy 1.8 MeV/u
- 6 tanks, 97 MHz
- **IH** Structure
- Integrated bunching action 5

UAC

Low beta QWR Cavity

 $\beta = 0.05, f = 97 MHz$

UAC

STATUS of HCI

SRF Infrastructure at IUAC

All mechanical works, e.g. forming machining etc. are performed by a commercial vendor, with whom we closely work.

Liquid He Plant with dewar. Cap – 750W, Tested for 950W

UAC

Collaborations Spoke Cavity for Fermilab Project X

 $\beta = 0.22, 325$ MHz

1.3 GHz TESLA type Cavity with RRCAT & Fermilab

SUMMARY

Superconducting Linac Booster operation made smoother and performance improved.

Alternate high current injector project prototypes tested.

New SRF cavities being developed in collaboration.

Thank You for your attention!