Paper | Title | Page |
---|---|---|
FR101 | Overview of Linear Collider Test Facilities and Results | 827 |
|
||
Linear Collider technology will be recommended by the International Technology Recommendation Panel (ITRP) to the International Linear Collider Steering Committee (ILCSC), soon. Towards this recommendation, many efforts of the developments and the output results of each technology have been made to satisfy the requirements of the technical review committee report (TRC). The test facilities of each linear collider design are the place of the key technology demonstration and realization. The overview of the LC test facilities activities and outputs of TTF, NLCTA, ATF/GLCTA and CTF are summarized and reviewed. | ||
|
Transparencies | |
FR102 | Muon Ionization Cooling Experiment (MICE) | 832 |
|
||
There is presently considerable activity worldwide on developing the technical capability for a neutrino factory based on a muon storage ring and, a muon collider. Muons are obtained from the decay of pions produced when an intense proton beam hits a high-Z target, so the initial muon beam has a large 6-dimensional phase space. To increase the muons phase-space density, we use ionization cooling, which is based on energy loss in an absorber, followed by re-acceleration with high-gradient, normal-conducting RF cavities. The absorber of choice is liquid hydrogen to minimize multiple scattering. A superimposed solenoidal focusing channel contains the muons. Although the physics is straightforward, the technology and its implementation are not. The international MICE collaboration will demonstrate ionization cooling of a muon beam in a short section of a typical cooling channel. The experiment is approved for operation at Rutherford Appleton Lab. We will measure the cooling effects of various absorber materials at various initial emittance values using single-particle counting techniques. The experiment layout and goals will be discussed, along with the status of component R&D. | ||
|
Transparencies | |
FR103 | Status of the SNS Linac: An Overview | 837 |
|
||
The Spallation Neutron Source SNS is a second generation pulsed neutron source and under construction at Oak Ridge National Laboratory. The SNS is funded by the U.S. Department of Energy?s Office of Basic energy Sciences and is dedicated to the study of the structure and dynamics of materials by neutron scattering. A collaboration composed of six national laboratories (ANL, BNL, TJNAF, LANL, LBNL, ORNL) is responsible for the design and construction of the various subsystems. With the official start in October 1998, the operation of the facility will begin in 2006 and deliver a 1.0 GeV, 1.4 MW proton beam with a pulse length of approximately 700 nanoseconds on a liquid mercury target. The multi-lab collaboration allowed access to a large variety of expertise in order to enhance the delivered beam power by almost an order of magnitude compared to existing neutron facilities. The SNS linac consists of a combination of room temperature and superconducting structures and will be the first pulsed high power sc linac in the world. The challenges and the achievements will be described in the paper.
SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge. |
||
|
Transparencies | |
FR104 | Overview on High-Brightness Electron Guns | 842 |
|
||
In an electron storage ring, the quality of the electron beam is generally a function of the ring lattice parameters and has little to do with the source of the electrons. In most electron linear accelerators, the beam brightness is set by the beam source. It is very difficult to improve the overall beam brightness after it has been produced; on the other hand, providing a brighter beam source can provide an instant upgrade to the performance of a brightness-limited electron linac-based facility. The development and routine operation of high-brightness guns, therefore, is critical to the success of next-generation linac-based light sources. This includes sources already under construction, such as LCLS, as well as proposed and as-yet completely theoretical machines. In this talk I present a general overview of the state-of-the-art in high-brightness electron beam source development, discuss the concept of situational brightness, and highlight some interesting paths towards future devices. I conclude with thoughts on some possible alternate applications for high-brightness beams. | ||
|
Transparencies |