Author: Persson, T.H.B.
Paper Title Page
MOPOST003 BBQ and Doughnut Beams: A Tasty Recipe for Measuring Amplitude Dependence of the Closest Tune Approach 42
 
  • E.H. Maclean, F.S. Carlier, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Beam-based observations and theoretical studies have demonstrated the existence of a significant amplitude dependence of the closest tune approach (ADECTA) in the LHC. This effect has the potential to generate significant distortion of the tune footprint and thus is of interest in regard to Landau damping. Conventionally ADECTA has been studied through saturation of tune separation with action during amplitude-detuning type measurements. In this paper, an alternative measurement technique is proposed and results of initial tests with beam are presented. The novel technique attempts to measure ADECTA by performing a classical closest approach tune scan, using proton beams in the LHC, which have been kicked and allowed to decohere, effectively giving a large action doughnut beam. It is shown that the tune and closest approach of the doughnut beams can be measured using the existing LHC Base-Band tune (BBQ) measurement system, and an amplitude dependence can be observed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST003  
About • Received ※ 08 June 2022 — Revised ※ 20 June 2022 — Accepted ※ 12 July 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT040 Summary of the Post-Long Shutdown 2 LHC Hardware Commissioning Campaign 335
 
  • A. Apollonio, O.Ø. Andreassen, A. Antoine, T. Argyropoulos, M.C. Bastos, M. Bednarek, B. Bordini, K. Brodzinski, A. Calia, Z. Charifoulline, G.-J. Coelingh, G. D’Angelo, D. Delikaris, R. Denz, L. Fiscarelli, V. Froidbise, M.A. Galilée, J.C. Garnier, R. Gorbonosov, P. Hagen, M. Hostettler, D. Jacquet, S. Le Naour, D. Mirarchi, V. Montabonnet, B.I. Panev, T.H.B. Persson, T. Podzorny, M. Pojer, E. Ravaioli, F. Rodriguez-Mateos, A.P. Siemko, M. Solfaroli, J. Spasic, A. Stanisz, J. Steckert, R. Steerenberg, S. Sudak, H. Thiesen, E. Todesco, G. Trad, J.A. Uythoven, S. Uznanski, A.P. Verweij, J. Wenninger, G.P. Willering, D. Wollmann, S. Yammine
    CERN, Meyrin, Switzerland
  • V. Vizziello
    INFN/LASA, Segrate (MI), Italy
 
  In this contribution we provide a summary of the LHC hardware commissioning campaign following the second CERN Long Shutdown (LS2), initially targeting the nominal LHC energy of 7 TeV. A summary of the test procedures and tools used for testing the LHC superconducting circuits is given, together with statistics on the successful test execution. The paper then focuses on the experience and observations during the main dipole training campaign, describing the encountered problems, the related analysis and mitigation measures, ultimately leading to the decision to reduce the energy target to 6.8 TeV. The re-commissioning of two powering sectors, following the identified problems, is discussed in detail. The paper concludes with an outlook to the future hardware commissioning campaigns, discussing the lessons learnt and possible strategies moving forward.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT040  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT047 Experimental Demonstration of Machine Learning Application in LHC Optics Commissioning 359
 
  • E. Fol, F.S. Carlier, J. Dilly, M. Hofer, J. Keintzel, M. Le Garrec, E.H. Maclean, T.H.B. Persson, F. Soubelet, R. Tomás García, A. Wegscheider
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  Recently, we conducted successful studies on the suitability of machine learning (ML) methods for optics measurements and corrections, incorporating novel ML-based methods for local optics corrections and reconstruction of optics functions. After performing extensive verifications on simulations and past measurement data, the newly developed techniques became operational in the LHC commissioning 2022. We present the experimental results obtained with the ML-based methods and discuss future improvements. Besides, we also report on improving the Beam Position Monitor (BPM) diagnostics with the help of the anomaly detection technique capable to identify malfunctioning BPMs along with their possible fault causes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT047  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST008 Optics Correction Strategy for Run 3 of the LHC 1687
 
  • T.H.B. Persson, F.S. Carlier, A. Costa Ojeda, J. Dilly, V. Ferrentino, E. Fol, H. García Morales, M. Hofer, E.J. Høydalsvik, J. Keintzel, M. Le Garrec, E.H. Maclean, L. Malina, F. Soubelet, R. Tomás García, A. Wegscheider, L. van Riesen-Haupt
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  After almost 4 years of shutdown the LHC is again operational in 2022. Experience from the previous Long Shutdown (LS) has shown that the local errors around the triplet magnets changed significantly and it is likely we will again see different errors in 2022. In the LHC there is an interplay between the linear and the nonlinear correction which can make the corrections difficult and time-consuming to find. In this article, we describe the measurements and corrections performed during the commissioning in 2022 in order to control both the linear and the nonlinear optics to high precision.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST008  
About • Received ※ 08 June 2022 — Revised ※ 25 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT007 First Interaction Region Local Coupling Corrections in the LHC Run 3 1838
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
The successful operation of large scale particle accelerators depends on the precise correction of unavoidable magnetic field or magnet alignment errors present in the machine. During the LHC Run 2, local linear coupling in the interaction regions (IR) was shown to have a significant impact on the beam size, making its proper handling a necessity for Run 3 and the High Luminosity LHC (HL-LHC). A new approach to accurately minimise the local IR linear coupling based on correlated external variables such as the |C-| had been proposed, which relies on the application of a rigid waist shift in order to create an asymmetry in the IR optics. In this contribution, preliminary corrections from the 2021 beam test and the early 2022 commissioning are presented, as well as first results of the new method’s experimental configuration tests in the LHC Run 3 commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT007  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT008 Supervised Machine Learning for Local Coupling Sources Detection in the LHC 1842
SUSPMF001   use link to see paper's listing under its alternate paper code  
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
Local interaction region (IR) linear coupling in the LHC has been shown to have a negative impact on beam size and luminosity, making its accurate correction for Run 3 and beyond a necessity. In view of determining corrections, supervised machine learning has been applied to the detection of linear coupling sources, showing promising results in simulations. An evaluation of different applied models is given, followed by the presentation of further possible application concepts for linear coupling corrections using machine learning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT008  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT010 Progress on Action Phase Jump for LHC Local Optics Correction 1850
 
  • J.F. Cardona, Y. Rodriguez Garcia
    UNAL, Bogota D.C, Colombia
  • H. García Morales, M. Hofer, E.H. Maclean, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Y. Rodriguez Garcia
    UAN, Bogotá D.C., Colombia
 
  The correction of the local optics at the Interaction Regions of the LHC is crucial to ensure a good performance of the machine. This is even more important for the future LHC upgrade, HL-LHC, where the optics is more sensitive to magnetic errors. For that reason, it is important to explore alternative techniques for local optics corrections. In this paper, we evaluate the performance of the Action Phase Jump method for optics correction in the LHC and the HL-LHC and explore ways to integrate this technique in regular operations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT011 Modelling FCC-ee Using MADX 1854
 
  • L. van Riesen-Haupt, H. Burkhardt, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  We present the latest developments for simulating FCC-ee using CERN’s MADX software. Along with updated benchmark studies, we describe how the latest MADX updates can facilitate the simulation of FCC-ee design features, including improvements in tapering and different options for implementing a tilted solenoid.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT011  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT012 MAD-X for Future Accelerators 1858
 
  • T.H.B. Persson, H. Burkhardt, R. De Maria, L. Deniau, E.J. Høydalsvik, A. Latina, P.K. Skowroński, R. Tomás García, L. van Riesen-Haupt
    CERN, Meyrin, Switzerland
 
  The development of MAD-X was started more than 20 years ago and it still remains the main tool for single particle dynamics for both optics design, error studies as well as for operational model-based software at CERN. In this article, we outline some of the recent development of MAD-X and plans for the future. In particular, we focus on the development of the twiss module used to calculate optics functions in MAD-X which is based on first and second order matrices. These have traditionally been calculated as an expansion around the ideal orbit. In this paper, we describe explicitly how an expansion around the closed orbit can be employed instead, in order to get more precise results. We also describe the latest development of the beam-beam long range wire compensator in MAD-X, an element that has been implemented using the aforementioned approach.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT012  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)