MC5: Beam Dynamics and EM Fields
D07 High Intensity Circular Machines - Space Charge, Halos
Paper Title Page
TUPAB234 Exploring Accelerators for Intense Beams with the IBEX Paul Trap 1980
 
  • J.A.D. Flowerdew
    University of Oxford, Oxford, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Accelerators built from linear components will exhibit bounded and stable particle motion in the ideal case. However, any imperfections in field strength or misalignment of components can introduce chaotic and unstable particle motion. All accelerators are prone to such non-linearities but the effects are even more significant in high intensity particle beams with the presence of space charge effects. This work aims to explore the non-linearities which arise in high intensity particle beams using the scaled experiment, IBEX. The IBEX experiment is a linear Paul trap that allows the transverse dynamics of a collection of trapped particles to be studied by mimicking the propagation through multiple quadrupole lattice periods whilst remaining stationary in the laboratory frame. IBEX is currently undergoing a non-linear upgrade with the goal of investigating Non-linear Integrable Optics (NIO) in order to improve our understanding and utilisation of high intensity particle beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB234  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB248 Kurth Vlasov-Poisson Solution for a Beam in the Presence of Time-Dependent Isotropic Focusing 3213
 
  • C.E. Mitchell, K. Hwang, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The well-known K-V distribution provides an exact solution of the self-consistent Vlasov-Poisson system describing an unbunched charged particle beam with nonzero temperature in the presence of time-dependent linear transverse focusing. We describe a lesser-known exact solution of the Vlasov-Poisson system that is based on the work of Kurth in stellar dynamics. Unlike the K-V distribution, the Kurth distribution is a true function of the phase space variables, and the solution may be constructed on either the 4D or 6D phase space, for the special case of isotropic linear focusing. Numerical studies are performed for benchmarking simulation codes, and the stability properties of a 4D Kurth distribution are compared with those of a K-V distribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB248  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB249 Model of Curvature Effects Associated with Space Charge for Long Beams in Dipoles 3217
 
  • C.E. Mitchell, K. Hwang, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
For modeling the dynamics within a dipole of a bunch whose length is much larger than the vacuum pipe radius, it is typical to use a 2D (or 2.5D) Poisson solver, with arc length taken as the independent variable. However, sampled at a fixed time, the beam is curved, space charge is not truly 2D, and the usual cancellation between E and B contributions to the Lorentz force need not exactly hold. The size of these effects is estimated using an idealized model of a uniform torus of charge rotating inside a toroidal conducting pipe. Simple expressions are provided for the correction of the electric and magnetic fields to first order in the reciprocal of the curvature radius.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB249  
About • paper received ※ 19 May 2021       paper accepted ※ 02 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB250 Interplay Between Space Charge, Intra-Beam Scattering, and Synchrotron Radiation Effects 3220
 
  • M. Zampetakis, F. Antoniou, H. Bartosik, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • M. Zampetakis
    University of Crete, Heraklion, Crete, Greece
 
  The objective of this research is to study the interplay of synchrotron radiation, intra-beam scattering, and space charge in the vicinity of excited resonances. In this respect, two modules were developed to simulate intra-beam scattering and synchrotron radiation effects and plugged into pyORBIT to be used together with its space charge module. Different regimes of synchrotron motion were used to study the response of the beam to a lattice resonance when space charge, intra-beam scattering and synchrotron radiation are present.  
poster icon Poster WEPAB250 [0.536 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB250  
About • paper received ※ 17 May 2021       paper accepted ※ 21 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB241 Examination of Semi-Analytic Model for Mode Coupling Instabilities 4278
 
  • M.A. Balcewicz, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • M. Blaskiewicz
    BNL, Upton, New York, USA
 
  Funding: Work supported by by Brookhaven Science Associates, LLC under contract number 364776.
A semianalytic model for studying beams at high SC tune shift is shown. It is a generalization of SWM ** /ABS ** for an arbitrary number of longitudinal phase space cycles, yielding more realistic longitudinal physics. The consequences of this generalization are explored; model is benchmarked against TRANFT *** and analytical methods.
* Blaskiewicz, Michael. Phys. Rev. ST Accel. Beams, vol. 1, p. 044201, 1998.
** Burov, Alexey. Phys. Rev. Accel. Beams, vol. 22, p. 034202, 2019.
*** M. Blaskiewicz, in Proc. PAC07, Albuquerque,
 
poster icon Poster THPAB241 [0.894 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB241  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)