Author: Velotti, F.M.
Paper Title Page
MOPAB241 Design of the Proton and Electron Transfer Lines for AWAKE Run 2c 778
 
  • R.L. Ramjiawan
    JAI, Oxford, United Kingdom
  • S. Döbert, E. Gschwendtner, P. Muggli, F.M. Velotti, L. Verra
    CERN, Meyrin, Switzerland
  • J.P. Farmer
    MPI-P, München, Germany
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE Run 1 experiment achieved electron acceleration to 2 GeV using plasma wakefield acceleration driven by 400 GeV, self-modulated proton bunches from the CERN SPS. The Run 2c phase of the experiment aims to build on these results by demonstrating acceleration to ~10 GeV while preserving the quality of the accelerated electron beam. To realize this, there will be an additional plasma cell, to separate the proton bunch self-modulation and the electron acceleration. A new 150 MeV beamline is required to transport and focus the witness electron beam to a beam size of several microns at the injection point. This specification is designed to preserve the beam emittance during acceleration, also requiring micron-level stability between the driver and witness beams. To facilitate these changes, the Run 1 proton transfer line will be reconfigured to shift the first plasma cell 40 m downstream. The Run 1 electron beamline will be adapted and used to inject electron bunches into the first plasma cell to seed the proton bunch self-modulation. Proposed adjustments to the proton transfer line and studies for the designs of the two electron transfer lines are detailed in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB241  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB185 Target Bypass Beam Optics for Future High Intensity Fixed Target Experiments in the CERN North Area 3046
 
  • G.L. D’Alessandro, D. Banerjee, J. Bernhard, M. Brugger, N. Doble, L. Gatignon, A. Gerbershagen, B. Rae, F.M. Velotti
    CERN, Meyrin, Switzerland
  • S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
 
  Several of the proposed experiments for operation at the K12 beam line would profit from significant beam intensity increase. Among those, there is the KLEVER experiment that would require an intensity of 2x1013 protons per 4.8 s long spill. The main goal of the experiment is to measure BR(KL->pi0 nu nu) to test the Standard Model structure by itself, and in combination with results from NA62 for BR(K±>pi+ nu nu). NA62 could also profit from higher intensities, and could be run in a new configuration called NA62HI(gher intensity). In the current configuration the beam is transported from the SPS to the TT24 beamline. This beamline leads to the T4 target that attenuates the beam for P42. After T4 the beam is directed into the P42 beamline before impinging on the T10 target and creating the particles necessary for the experiment. Those are finally transported to the detector via K12. This paper presents the idea of partially bypassing T4 and changing the P42 beamline configuration in order to have a sufficiently small beam size at the T10 target for both KLEVER and NA62-HI. Optics studies are developed in MADX and the AppLE.py, software developed at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB185  
About • paper received ※ 17 May 2021       paper accepted ※ 01 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB366 Towards the Last Stages of the CERN’s AD-Target Area Consolidation Project and Recommissioning Plans to Resume Operation 3563
 
  • C. Torregrosa, C. Ahdida, A. Bouvard, A. Broche, S. Burger, M.E.J. Butcher, M. Calviani, V. Clerc, A. De Macedo, S. De Man, F.A. Deslande, M. Di Castro, T. Dobers, T. Feniet, R. Ferriere, E. Fornasiere, R. Franqueira Ximenes, T.J. Giles, J.L. Grenard, E. Grenier-Boley, G. Gräwer, M. Guinchard, M.D. Jedrychowski, K. Kershaw, B. Lefort, E. Lopez Sola, J.M. Martin Ruiz, A. Martínez Sellés, G. Matulenaite, C.Y. Mucher, A. Newborough, M. Perez Ornedo, E. Perez-Duenas, A. Perillo-Marcone, L. Ponce, N. Solieri, M.B. Szewczyk, P.A. Thonet, M.A. Timmins, A. Tursun, W. Van den Broucke, F.M. Velotti, C. Vendeuvre, V. Vlachoudis
    CERN, Meyrin, Switzerland
  • J.C. Espadanal
    LIP, Lisboa, Portugal
 
  Antiprotons are produced at CERN at the Antiproton Decelerator (AD) Target Area by impacting 26 GeV/c proton beams onto a fixed target. Further collection, momentum selection, and transport of the secondary particles - including antiprotons - towards the AD ring is realised by a 400 kA pulsed magnetic horn and a set of magnetic dipoles and quadrupoles. A major consolidation of the area - in operation since the 80s - has taken place during the CERN Long Shutdown 2 (2019-2021). Among other activities, such upgrade included: (i) Installation of a new air-cooled target design and manufacturing of a new batch of magnetic horns, including a surface pulsing test-bench for their validation and fine-tuning (ii) Installation of a new positioning and maintenance system for the target and horn (iii) Refurbishment and decontamination of the Target Area and its equipment, (iv) Construction of a new surface service building to house new nuclear ventilation systems. This contribution presents an overview of such activities and lesson learnt. In addition, it provides the latest results from refractory metals R&D for the antiproton target and a summary of the recommissioning and optimization plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB366  
About • paper received ※ 18 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)