Paper | Title | Page |
---|---|---|
MOPAB036 | Different Operation Regimes at the KIT Storage Ring KARA (Karlsruhe Research Accelerator) | 163 |
|
||
The KIT storage ring KARA operates in a wide energy range from 0.5 to 2.5 GeV. Different operation modes have been implemented at KARA, so far, the double-bend achromat (DBA) lattice with non-dispersive straight sections, the theoretical minimum emittance (TME) lattice with distributed dispersion, different versions of low-compaction factor optics with highly stretched dispersion function. Short bunches of a few ps pulse width are available at KARA. Low-alpha optics has been simulated, tested and implemented in a wide operational range of the storage ring and is now routinely used at 1.3 GeV for studies of beam bursting effects caused by coherent synchrotron radiation in the THz frequency range. Different non-linear effects, in particular residual high-order components of the magnetic field, generated in high-field superconducting wigglers have been studied and cured. Based on good agreement between computer simulations and experiments, a new operation mode at high vertical tune was implemented. The beam performance during user operation as well as at low-alpha regimes has been improved. A specific optic with negative compaction factor was simulated, tested and is in operation. | ||
Poster MOPAB036 [1.477 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB036 | |
About • | paper received ※ 13 May 2021 paper accepted ※ 08 June 2021 issue date ※ 29 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB037 | On Possibility of Alpha-buckets Detecting at the KIT Storage Ring KARA (Karlsruhe Research Accelerator) | 167 |
|
||
Computer studies of longitudinal motion have been performed with the objective to estimate the possibility of detection of alpha-buckets at the KIT storage ring KARA (Karlsruhe Research Accelerator). The longitudinal equations of motion and the Hamiltonian were expanded to high order terms of the energy deviation of particles in a beam. Roots of third order equation for three leading terms of momentum compaction factor and free energy independent term were derived in a form suitable for analytical estimations. Averaged quadratic terms of closed orbit distortions caused by misalignment of magnetic elements in a ring lead to orbit lengthening independent of particle energy deviation. Particle transverse excursions were estimated and are taken into account. Simulations have been bench-marked on existing experiments at Metrology Light Source (MLS) in Berlin (Germany) and SOLEIL (France). Parameters of three simultaneous beams and alpha buckets at MLS and SOLEIL have been reproduced with high accuracy. A computer model of KARA was used to predict behavior and the dynamics of possible simultaneous beams in the ring. | ||
Poster MOPAB037 [1.269 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB037 | |
About • | paper received ※ 11 May 2021 paper accepted ※ 28 May 2021 issue date ※ 29 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB083 | Effect of Negative Momentum Compaction Operation on the Current-Dependent Bunch Length | 2786 |
|
||
Funding: Funded by the European Union’s Horizon 2020 Research and Innovation programme, Grant Agreement No 730871. P.S, T.B are supported by DFG-funded Karlsruhe School of Elementary and Astroparticle Physics. New operation modes are often considered during the development of new synchrotron light sources. An understanding of the effects involved is inevitable for a successful operation of these schemes. At the KIT storage ring KARA (Karlsruhe Research Accelerator), new modes can be implemented and tested at various energies, employing a variety of performant beam diagnostics devices. Negative momentum compaction optics at various energies have been established. Also, the influence of a negative momentum compaction factor on different effects has been investigated. This contribution comprises a short report on the status of the implementation of a negative momentum compaction optics at KARA. Additionally, first measurements of the changes to the current-dependent bunch length will be presented. |
||
Poster WEPAB083 [1.129 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB083 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 01 July 2021 issue date ※ 26 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB233 | Excitation of Micro-Bunching in Short Electron Bunches Using RF Amplitude Modulation | 3173 |
|
||
In its short-bunch operation mode, the KIT storage ring KARA provides picosecond-long electron bunches, which emit coherent synchrotron radiation (CSR) up to the terahertz frequency range. Due to the high spatial compression under these conditions, the self-interaction of the bunch with its own emitted CSR induces a wake-field, which significantly influences the longitudinal charge distribution. Above a given threshold current, this leads to the formation of dynamically evolving micro-structures within the bunch and is thus called micro-bunching instability. As CSR is emitted at wavelengths corresponding to the spatial dimension of the emitter, these small structures lead to an increased emission of CSR at higher frequencies. The instability is therefore deliberately induced at KARA to provide intense THz radiation to dedicated experiments. To further increase the emitted power in the desired frequency range, we consider the potential of RF amplitude modulations to intentionally excite this form of micro-bunching in short electron bunches. This work is supported by the BMBF project 05K19VKC TiMo (Federal Ministry of Education and Research). | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB233 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 01 July 2021 issue date ※ 17 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB246 | Influence of Different Beam Energies on the Micro-Bunching Instability | 3209 |
|
||
During the operation of an electron synchrotron with short electron bunches, the beam dynamics are influenced by the occurrence of the micro-bunching instability. This collective instability is caused by the self-interaction of a short electron bunch with its own emitted coherent synchrotron radiation (CSR). Above a certain threshold bunch current dynamic micro-structures start to occur on the longitudinal phase space density. The resulting dynamics depend on various parameters and were previously investigated in relation to, amongst others, the momentum compaction factor and the acceleration voltage. In this contribution, the influence of the energy of the electrons on the dynamics of the micro-bunching instability is studied based on measurements at the KIT storage ring KARA (Karlsruhe Research Accelerator). | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB246 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 08 July 2021 issue date ※ 11 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |