

Karlsruhe Institute of Technology

Effect of Negative Momentum Compaction Operation on the **Current-Dependent Bunch Length**

P. Schreiber* (patrick.schreiber@kit.edu), T. Boltz*, M. Brosi, B. Haerer, A. Mochihashi, A. I. Papash, R. Ruprecht, M. Schuh and A.-S. Müller Karlsruhe Institute of Technology, Karlsruhe, Germany

Motivation

- Future low emittance rings could benefit from negative momentum compaction operation
- Reduced sextupoles possible and result in higher dynamic aperture
- Understanding of involved effects is necessary
- KARA as test facility allows studies in this regime

Lattice and Optics

KARA

4 fold symmetry

- 2 double bend achromats per cell
- 5 quadrupole magnets per DBA (Q1-5)
- Straight sections are filled with insertion devices, RF stations and injection magnets

Calculated lattice used for user operation at $\alpha_c = 9 \times 10^{-3}$ and 0.5 GeV. The bottom depicts the magnets, quadrupoles in red, sextupoles in green and bends in blue.

Parameter	Value
Energy	0.5 - 2.5 GeV
Circumference	110.4 m
RF frequency	500 MHz
Revolution frequency	2.715 MHz
$\sigma_{z, RMS}$ (standard operation, 2.5 GeV)	45 ps
$\sigma_{\rm z, RMS}$ (short bunch mode, 1.3 GeV)	few ps

Calculated lattice for a negative value of $\alpha_{c} = -1.2 \times 10^{-3}$ at 0.5 GeV. In large parts the dispersion is negative.

Operation Modes

- Standard operation at 2.5 GeV and $\alpha_c \approx 9 \times 10^{-3}$
- Short bunch mode at 1.3 GeV and $\alpha_c \approx 1 \times 10^{-4}$

New modes:

- Negative α_c at 0.5 GeV and various α_c
- Negative α_c at 0.9 GeV and various α_c
- Negative α_c at 1.3 GeV and various α_c

Status of Operation

Injection into different optics with negative values of α_c has been established at 0.5 GeV [1] Maximum beam and bunch current is limited, highest achieved current is 22 mA distributed over 120 bunches and 1 mA for single-bunch operation at 0.5 GeV

Current-Dependent Bunch Lengthening

- **\blacksquare** Bunch length influenced by effective longitudinal potential V_{eff}
- V_{eff} is sum of RF potential and longitudinal wake potential
- Wake potential derived from bunch shape and impedance

High orbit deviations seem to be beneficial for the injection

- Reduced sextupole strengths and therefore reduced chromaticities seemed beneficial
- Ramping storage ring energy up to 0.9 GeV and 1.3 GeV has been established
- Orbit has been corrected at 0.9 GeV and 1.3 GeV
- Beam lifetime is greatly increased at higher energies

Bunch Length Simulation

- Simulations parameters equivalent to measurements
- Simulations performed with Inovesa [2]
- Purely longitudinal CSR Parallel Plates impedance considered

Bunch length fluctuations arise at currents where the micro-bunching instability occurs [3]

- **RF** potential reversed for $\alpha_c < 0$ operation
- \Rightarrow Difference in current-dependent bunch length expected

Bunch Length Measurements

Bunch length measured using a streak camera setup [4, 5] Current decreased naturally during measurement Measurement during single bunch 1.3 GeV operation

Comparison

Bunch lengthening with current for positive α_c and shortening for low currents at negative α_c

Simulations show roughly the same zero current bunch length in both cases as expected • Measured σ_z at low currents suggests offset between positive α_c and negative α_c Summary and Outlook **•** Roughly gaussian bunches at low currents result in expected shortening for negative α_{c} • Optics with negative values of α_c have been successfully established at KARA Simulations show bunch deformations at higher currents resulting in bunch lenghening for Beam energy can be ramped from 0.5 GeV to 0.9 GeV and 1.3 GeV negative α_c , not clearly visible in measurements due to limited measurement range Bunch length σ_z for positive and negative α_c was measured • At low currents σ_z increases with current for positive and decreases for negative α_c [1] P. Schreiber et al., Status of Operation With Negative Momentum Compaction at KARA, IPAC19, 2019, DOI: 10.18429/JACoW-IPAC2019-MOPTS017 Simulations show lengthening for negative α_c at higher currents due to bunch deformations [2] P. Schönfeldt et al., Inovesa/Inovesa: Gamma Three DOI: 10.5281/zenodo.2653504 • Offset in σ_z between positive and negative α_c suggested [3] K. L. F. Bane, Y. Cai, and G. Stupakov, Threshold studies of the microwave instability in electron storage rings, PhysRevSTAB, 2010, DOI: 10.1103/ PhysRevSTAB.13.104402 • Overall measurement fits expectations [4] P. Schönfeldt et al., Fluctuation of Bunch Length in Bursting CSR: Measurement and Simulation, IPAC14, 2014, Next step: Measurements of bunch length up to higher currents at negative α_c DOI: 10.18429/JACoW-IPAC2014-MOPRO068 [5] B. Kehrer et al., Visible Light Diagnostics at the ANKA Storage Ring, IPAC15, 2015, • Further steps: Systematic measurements at different values of α_{c} DOI: 10.18429/JACoW-IPAC2015-MOPHA037

*P. Schreiber and T. Boltz acknowledge the support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871

KIT – The Research University in the Helmholtz Association