Author: Satogata, T.
Paper Title Page
TUPAB040 Design Concept for the Second Interaction Region for Electron-Ion Collider 1435
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, A. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, A.V. Sy, C. Weiss, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 and Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The pos­si­bil­ity of two in­ter­ac­tion re­gions (IRs) is a de­sign re­quire­ment for Elec­tron-Ion Col­lider (EIC). There is also a sig­nif­i­cant in­ter­est from the nu­clear physics com­mu­nity to have a 2nd IR with mea­sure­ment ca­pa­bil­i­ties com­ple­men­tary to those of the 1st IR. While the 2nd IR will be in op­er­a­tion over the en­tire en­ergy range of ~20GeV to ~140GeV cen­ter of mass (CM). The 2nd IR can also pro­vide an ac­cep­tance cov­er­age com­ple­men­tary to that of the 1st. In this paper, we pre­sent a brief overview and the cur­rent progress of the 2nd IR de­sign in terms of the pa­ra­me­ters, mag­net lay­out, and beam dy­nam­ics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB040  
About • paper received ※ 24 May 2021       paper accepted ※ 31 August 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB079 Using ER@CEBAF to Show that a Multipass ERL Can Drive an XFEL 1555
 
  • G. Perez-Segurana
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • I.R. Bailey, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • R.M. Bodenstein, S.A. Bogacz, D. Douglas, Y. Roblin, T. Satogata
    JLab, Newport News, Virginia, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  A multi-pass re­cir­cu­lat­ing su­per­con­duct­ing CW linac of­fers a cost ef­fec­tive path to a multi-user fa­cil­ity with un­prece­dented sci­en­tific and in­dus­trial reach over a wide range of dis­ci­plines. We pro­pose such a fa­cil­ity as an op­tion for a po­ten­tial UK-XFEL. En­ergy Re­cov­ery en­ables multi-MHz FEL sources, for ex­am­ple, an X-ray FEL os­cil­la­tor or re­gen­er­a­tive am­pli­fier FEL. Ad­di­tion­ally, com­bin­ing with ex­ter­nal lasers and/or self-in­ter­ac­tion would pro­vide ac­cess to MeV and GeV gamma-rays via in­verse Comp­ton scat­ter­ing at high av­er­age power for nu­clear and par­ti­cle physics ap­pli­ca­tions. An op­por­tu­nity ex­ists to demon­strate the nec­es­sary point-to-par­al­lel lon­gi­tu­di­nal matches to drive an XFEL and suc­cess­fully en­ergy re­cover at the up­com­ing 5-pass up, 5-pass down En­ergy Re­cov­ery ex­per­i­ment on CEBAF at JLab termed ER@​CEBAF.​ We show can­di­date matches and sim­u­la­tions sup­port­ing the min­i­mal nec­es­sary mod­i­fi­ca­tions to CEBAF this will re­quire. This in­cludes lin­eari­sa­tion of the lon­gi­tu­di­nal phase space in the in­jec­tor and a re­duc­tion in the dis­per­sion of the arcs, both of which in­crease the en­ergy ac­cep­tance of CEBAF. We ex­pect to com­mence ini­tial tests of these adap­ta­tions on CEBAF dur­ing 2021.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB079  
About • paper received ※ 17 May 2021       paper accepted ※ 27 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB181 Demonstration of Electron Cooling using a Pulsed Beam from an Electrostatic Electron Cooler 1827
 
  • M.W. Bruker, S.V. Benson, A. Hutton, K. Jordan, T. Powers, R.A. Rimmer, T. Satogata, A.V. Sy, H. Wang, S. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
  • J. Li, F. Ma, X.M. Ma, L.J. Mao, X.P. Sha, M.T. Tang, J.C. Yang, X.D. Yang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • H. Zhao
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
Elec­tron cool­ing con­tin­ues to be an in­valu­able tech­nique to re­duce and main­tain the emit­tance in hadron stor­age rings in cases where sto­chas­tic cool­ing is in­ef­fi­cient and ra­dia­tive cool­ing is neg­li­gi­ble. Ex­tend­ing the en­ergy range of elec­tron cool­ers be­yond what is fea­si­ble with the con­ven­tional, elec­tro­sta­tic ap­proach ne­ces­si­tates the use of RF fields for ac­cel­er­a­tion and, thus, a bunched elec­tron beam. To ex­per­i­men­tally in­ves­ti­gate how the rel­a­tive time struc­ture of the two beams af­fects the cool­ing prop­er­ties, we have set up a pulsed-beam cool­ing de­vice by adding a syn­chro­nized puls­ing cir­cuit to the con­ven­tional elec­tron source of the CSRm cooler at In­sti­tute of Mod­ern Physics *. We show the ef­fect of the elec­tron bunch length and lon­gi­tu­di­nal ion fo­cus­ing strength on the tem­po­ral evo­lu­tion of the lon­gi­tu­di­nal and trans­verse ion beam pro­file and demon­strate the detri­men­tal ef­fect of tim­ing jit­ter as pre­dicted by the­ory and sim­u­la­tions. Com­pared to ac­tual RF-based cool­ers, the sim­plic­ity and flex­i­bil­ity of our setup will fa­cil­i­tate fur­ther in­ves­ti­ga­tions of spe­cific as­pects of bunched cool­ing such as syn­chro-be­ta­tron cou­pling and phase dither­ing.
* M. W. Bruker et al., Phys. Rev. Accel. Beams 24, 012801 (2021)
 
poster icon Poster TUPAB181 [3.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB181  
About • paper received ※ 19 May 2021       paper accepted ※ 15 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXA04 The RCS Design Status for the Electron Ion Collider 2521
 
  • V.H. Ranjbar, M. Blaskiewicz, Z.A. Conway, D.M. Gassner, C. Hetzel, B. Lepore, H. Lovelace III, I. Marneris, F. Méot, C. Montag, J. Skaritka, N. Tsoupas, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • J.M. Grames, J. Guo, F. Lin, V.S. Morozov, T. Satogata
    JLab, Newport News, Virginia, USA
  • D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The de­sign of the Elec­tron-Ion Col­lider Rapid Cy­cling Syn­chro­tron (RCS) to be con­structed at Brookhaven Na­tional Lab­o­ra­tory is ad­vanc­ing to meet the in­jec­tion re­quire­ments for the Elec­tron Stor­age Ring (ESR). Over the past year ac­tiv­i­ties are fo­cused on de­vel­op­ing the ap­proach to in­ject two 28 nC bunches every sec­ond, up from the orig­i­nal de­sign of one 10nC bunch every sec­ond. The so­lu­tion re­quires sev­eral key changes con­cern­ing the in­jec­tion and ex­trac­tion kick­ers, charge ac­cu­mu­la­tion via bunch merg­ing and a care­fully cal­i­brated RF ac­cel­er­a­tion pro­file to match the lon­gi­tu­di­nal emit­tance re­quired by the ESR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXA04  
About • paper received ※ 19 May 2021       paper accepted ※ 31 August 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB383 An Evolutionary Algorithm Approach to Multi-Pass ERL Optics Design 3610
 
  • I. Neththikumara, T. Satogata
    ODU, Norfolk, Virginia, USA
  • R.M. Bodenstein, S.A. Bogacz, T. Satogata
    JLab, Newport News, Virginia, USA
  • A. Vandenhoeke
    ULB, Bruxelles, Belgium
 
  Funding: This material is based upon work supported by the U.S. Department of Energy under contract DE-AC05-06OR23177.
An En­ergy Re­cov­ery Ex­per­i­ment at CEBAF (ER@​CEBAF) is aimed at demon­strat­ing high en­ergy, low cur­rent, multi-pass en­ergy re­cov­ery at the ex­ist­ing 12 GeV CEBAF ac­cel­er­a­tor. The beam break-up in­sta­bil­ity, lim­it­ing the max­i­mum beam cur­rent, can be con­trolled through min­i­miz­ing beta func­tions for the low­est en­ergy pass, which gives a pref­er­ence to strongly fo­cus­ing op­tics, e.g. a semi-pe­ri­odic FODO lat­tice. On the other hand, one needs to limit beta func­tion ex­cur­sions, caused by under fo­cus­ing, at the higher en­ergy passes, which in turn fa­vors weakly fo­cus­ing linac op­tics. Bal­anc­ing both ef­fects is the main ob­jec­tive of pro­posed multi-pass linac op­tics op­ti­miza­tion. Here, we dis­cuss an op­tics de­sign process for ER@​CEBAF trans­verse op­tics using a ge­netic al­go­rithm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB383  
About • paper received ※ 19 May 2021       paper accepted ※ 02 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB028 Beam-Beam Related Design Parameter Optimization for the Electron-Ion Collider 3808
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The de­sign lu­mi­nos­ity goal for the Elec­tron-Ion Col­lider (EIC) is 1e34 cm-2s−1. To achieve such a high lu­mi­nos­ity, the EIC de­sign adopts high bunch in­ten­si­ties, flat beams at the in­ter­ac­tion point (IP) with a small ver­ti­cal β*-func­tion, and a high col­li­sion fre­quency, to­gether with crab cav­i­ties to com­pen­sate the geo­met­ri­cal lu­mi­nos­ity loss due to the large cross­ing angle of 25m­rad. In this ar­ti­cle, we pre­sent our strate­gies and ap­proaches to ob­tain the de­sign lu­mi­nos­ity by op­ti­miz­ing some key beam-beam re­lated de­sign pa­ra­me­ters. Through our ex­ten­sive strong-strong and weak-strong beam-beam sim­u­la­tions, we found that beam flat­ness, elec­tron and pro­ton beam size match­ing at the IP, elec­tron and pro­ton work­ing points, and syn­chro-be­ta­tron res­o­nances aris­ing from the cross­ing angle col­li­sion play a cru­cial role in pro­ton beam size growth and lu­mi­nos­ity degra­da­tion. After op­ti­miz­ing those pa­ra­me­ters, we found a set of beam-beam re­lated de­sign pa­ra­me­ters to reach the de­sign lu­mi­nos­ity with an ac­cept­able beam-beam per­for­mance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 28 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB029 Dynamic Aperture Evaluation for the Hadron Storage Ring in the Electron-Ion Collider 3812
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) is aim­ing at a de­sign lu­mi­nos­ity of 1e34 cm-2s−1. To main­tain such a high lu­mi­nos­ity, both beams in the EIC need an ac­cept­able beam life­time in the pres­ence of the beam-beam in­ter­ac­tion. For this pur­pose, we car­ried out weak-strong el­e­ment-by-el­e­ment par­ti­cle track­ing to eval­u­ate the long-term dy­namic aper­ture for the hadron ring lat­tice de­sign. We im­proved our sim­u­la­tion code Sim­Track to treat some new lat­tice de­sign fea­tures, such as ra­di­ally off­set on-mo­men­tum or­bits, co­or­di­nate trans­for­ma­tions in the in­ter­ac­tion re­gion, etc. In this ar­ti­cle, we will pre­sent the pre­lim­i­nary dy­namic aper­ture cal­cu­la­tion re­sults with β*- func­tion scan, ra­dial orbit shift, cross­ing angle col­li­sion, and mag­netic field er­rors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB029  
About • paper received ※ 17 May 2021       paper accepted ※ 01 September 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)