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Principle of electron cooling

• reduce ion/proton beam emittance (“heat”) by mixing with cold medium
• velec = 〈vion〉 ⇒ Ekin,elec = melec

mion

〈
Ekin,ion

〉
• e.g. protons: Ekin,proton

Ekin,elec
≈ 1836

• cooling is a force that depends on the velocity deviation in the rest frame
⇒ acts only on momentum components and relies on external focusing to
affect the spatial bunch profile

• takes high number of passes⇒ limited to storage rings

e− e−
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Purpose of the experiment

Open questions in electron cooling

• If RF-based linac is used as electron cooler, electron beam has time structure
• How does this affect the cooling properties?
• Can we use it to our advantage to mitigate overcooling?

Experimental approach

• Use available DC cooler at CSRm (IMP) and pulse the gun
• Synchronize electron pulses with ion ring RF
• But relative phase is adjustable and can be made time-dependent
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Bunched cooling with synchrotron dynamics

• cooling force cares about velocity; bunch overlap is temporal/spatial
• high synchrotron amplitude results in…

• less time spent in region of overlap
• high velocity deviation at ΨS = 0

(copied from Ya. Derbenev: Theory of electron cooling)
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Experimental methods
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Principle of the bunched-beam cooling experiment
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Beam parameters

Ion beam
Particle 86Kr25+

Ekin 5MeV/nucleon
β 0.103
frev 191.5 kHz
h 2

Electron beam
Ekin 2.7 keV
bunch rate hfrev = 383 kHz (phase adjustable)
bunch length 100–1000ns, i.e. 3–30m
bunch current ∝ bunch length (uniform density, 30mA)

6



BPM setup and transfer impedance model
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• By summing the signals of opposite BPM plates, we make the BPMs
insensitive to the transverse beam position.

• The output signal is U = ZIbeam with Z(ω) ∝ iωRC
(1+iωRC) .

• Digitize U(t) and apply Ohm’s law in the frequency domain to obtain Ibeam(t)
(∝ longitudinal bunch shape).
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Experimental results:
constant bunch phase
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Example averaged bunch with corrections (500ns, 1 kV)
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Electron bunch length distribution (accumulated from all runs)

• low RMS jitter
∝ 2 ns

• but 400ns
bunches can
have two
lengths

• hardware bug
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Evolution of longitudinal profile (example: 500 ns, 1.0 kV)
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Evolution of statistical moments (example: 1.0 kV)

• Shorter bunches cool less
quickly but also introduce
less bunch shape distortion
(not shown here).

• ∃ optimum depending on
relative phase. Could not be
measured due to lack of
beam time.

• Note beam loss in jittering
400ns case.
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Cooling rates (0.2 s < t < 0.4 s)

• Excessive RF
focusing worsens
the longitudinal
cooling rate (higher
velocity).

• But it increases the
temporal overlap.
⇒ compromise
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Experimental results:
Bunch phase modulation (“dithering”)

with triangle waveform
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Phase dithering: Aliasing image of triangle waveform (300ns bunches)

• Can short electron bunches be used
more easily if they are intentionally
moved around longitudinally at
some low frequency?

• We imposed a triangle wave on the
bunch phase to measure the
cooling effect.

• Despite the low trigger rate (12Hz),
aliasing allows for a direct,
beam-based measurement of the
dithering function.
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Particle loss with dithering

• Varying the phase
causes particle loss.

• This method is not
a good idea unless
an extremely low
frequency can be
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Making sense of it all
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Understanding the particle loss

Space charge problem

• Longitudinal: Electric force as function of synchrotron phase. Force can point
in both directions.

• Transverse: Radial lens that is turned on/off as function of synchrotron
phase (synchro-betatron coupling). Force always points inwards.

Tracking simulation

• ion beam has no space charge⇒ single-particle simulation
• apply synchrotron energy gain per revolution
• apply transport matrices one by one, check for transverse aperture
• slice cooler into drifts of length Lslice; for every element:

• place macrocharges in cooler according to phase⇒ ~E(~r)
• ~F = ~̇p⇒ ∆~p = −~Eq Lsliceβc
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Tracking an ensemble of 1000 ions

• Varying bunch
length blows up
transverse
phase space

• Same for phase
dithering (not
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Conclusions

• Electron cooling with bunches
works without major surprises.

• Dithering does not, and jitter needs
to be avoided!

• This is an easy way to build a test
setup that grants access to
important aspects of cooling
physics and corresponding
beam-beam effects.
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