Author: Ruprecht, R.
Paper Title Page
MOPAB035 Modified Lattice of the Compact Storage Ring in the cSTART Project at Karlsruhe Institute of Technology 159
 
  • A.I. Papash, E. Bründermann, B. Härer, A.-S. Müller, R. Ruprecht, J. Schäfer, M. Schuh
    KIT, Karlsruhe, Germany
 
  A very large acceptance compact storage ring (VLA-cSR) is under design at the Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology (KIT, Germany). The combination of a compact storage ring and a laser wakefield accelerator (LWFA) might be the basis for future compact light sources and advancing user facilities. Meanwhile, the post-LWFA beam should be adapted for storage and accumulation in a dedicated storage ring. Modified geometry and lattice of a VLA-cSR operating at 50 MeV energy range have been studied in detailed simulations. The main features of a new model are described here. The new design, based on 45° bending magnets, is suitable to store the post-LWFA beam with a wide momentum spread (1% to 2%) as well as ultra-short electron bunches in the fs range from the Ferninfrarot Linac- Und Test- Experiment (FLUTE). The DBA-FDF lattice with relaxed settings, split elements, and higher-order optics of tolerable strength allows improving the dynamic aperture to an acceptable level. This contribution discusses the lattice features in detail and different possible operation schemes of a VLA-cSR.  
poster icon Poster MOPAB035 [1.405 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB035  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB036 Different Operation Regimes at the KIT Storage Ring KARA (Karlsruhe Research Accelerator) 163
 
  • A.I. Papash, M. Brosi, E. Huttel, A. Mochihashi, A.-S. Müller, R. Ruprecht, P. Schreiber, M. Schuh, N.J. Smale
    KIT, Eggenstein-Leopoldshafen, Germany
 
  The KIT storage ring KARA operates in a wide energy range from 0.5 to 2.5 GeV. Different operation modes have been implemented at KARA, so far, the double-bend achromat (DBA) lattice with non-dispersive straight sections, the theoretical minimum emittance (TME) lattice with distributed dispersion, different versions of low-compaction factor optics with highly stretched dispersion function. Short bunches of a few ps pulse width are available at KARA. Low-alpha optics has been simulated, tested and implemented in a wide operational range of the storage ring and is now routinely used at 1.3 GeV for studies of beam bursting effects caused by coherent synchrotron radiation in the THz frequency range. Different non-linear effects, in particular residual high-order components of the magnetic field, generated in high-field superconducting wigglers have been studied and cured. Based on good agreement between computer simulations and experiments, a new operation mode at high vertical tune was implemented. The beam performance during user operation as well as at low-alpha regimes has been improved. A specific optic with negative compaction factor was simulated, tested and is in operation.  
poster icon Poster MOPAB036 [1.477 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB036  
About • paper received ※ 13 May 2021       paper accepted ※ 08 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB037 On Possibility of Alpha-buckets Detecting at the KIT Storage Ring KARA (Karlsruhe Research Accelerator) 167
 
  • A.I. Papash, T. Boltz, M. Brosi, A.-S. Müller, R. Ruprecht, P. Schreiber, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  Computer studies of longitudinal motion have been performed with the objective to estimate the possibility of detection of alpha-buckets at the KIT storage ring KARA (Karlsruhe Research Accelerator). The longitudinal equations of motion and the Hamiltonian were expanded to high order terms of the energy deviation of particles in a beam. Roots of third order equation for three leading terms of momentum compaction factor and free energy independent term were derived in a form suitable for analytical estimations. Averaged quadratic terms of closed orbit distortions caused by misalignment of magnetic elements in a ring lead to orbit lengthening independent of particle energy deviation. Particle transverse excursions were estimated and are taken into account. Simulations have been bench-marked on existing experiments at Metrology Light Source (MLS) in Berlin (Germany) and SOLEIL (France). Parameters of three simultaneous beams and alpha buckets at MLS and SOLEIL have been reproduced with high accuracy. A computer model of KARA was used to predict behavior and the dynamics of possible simultaneous beams in the ring.  
poster icon Poster MOPAB037 [1.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB037  
About • paper received ※ 11 May 2021       paper accepted ※ 28 May 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB293 Electro-Optical Diagnostics at KARA and FLUTE - Results and Prospects 927
 
  • G. Niehues, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, M.M. Patil, R. Ruprecht, M. Schuh, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: S.F. was funded by BMBF contract No. 05K16VKA, C. W. by BMBF contract number 05K19VKD. G.N. and E.B. acknowledge support by the Helmholtz President’s strategic fund IVF "Plasma Accelerators".
Electro-optical (EO) methods are nowadays well-proven diagnostic tools, which are utilized to detect THz fields in countless experiments. The world’s first near-field EO sampling monitor at an electron storage ring was developed and installed at the KIT storage ring KARA (Karlsruhe Research Accelerator) and optimized to detect longitudinal bunch profiles. This experiment with other diagnostic techniques builds a distributed, synchronized sensor network to gain comprehensive data about the phase-space of electron bunches as well as the produced coherent synchrotron radiation (CSR). These measurements facilitate studies of physical conditions to provide, at the end, intense and stable CSR in the THz range. At KIT, we also operate FLUTE (Ferninfrarot Linac- und Test-Experiment), a new compact versatile linear accelerator as a test facility for novel techniques and diagnostics. There, EO diagnostics will be implemented to open up possibilities to evaluate and compare new techniques for longitudinal bunch diagnostics. In this contribution, we will give an overview of results achieved, the current status of the EO diagnostic setups at KARA and FLUTE and discuss future prospects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB293  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB087 Full Characterization of the Bunch-Compressor Dipoles for FLUTE 1585
 
  • Y. Nie, A. Bernhard, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, Y. Tong
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The Ferninfrarot Linac- Und Test-Experiment (FLUTE) is a KIT-operated linac-based test facility for accelerator research and development as well as a compact, ultra-broadband and short-pulse terahertz (THz) source. As a key component of FLUTE, the bunch compressor (chicane) consisting of four specially designed dipoles will be used to compress the 40-50 MeV electron bunches after the linac down to single fs bunch length. The maximum vertical magnetic field of the dipoles reach 0.22 T, with an effective length of 200 mm. The good field region is ±40 mm and ±10.5 mm in the horizontal and vertical direction, respectively. The latest measurement results of the dipoles in terms of field homogeneity, excitation and field reproducibility within the good field regions will be reported, which meet the predefined specifications. The measured 3D magnetic field distributions have been used to perform beam dynamics simulations of the bunch compressor. Effects of the real field properties on the beam dynamics, which are different from that of the ASTRA built-in dipole field, will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB087  
About • paper received ※ 10 May 2021       paper accepted ※ 27 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB255 Longitudinal Beam Dynamics and Coherent Synchrotron Radiation at cSTART 2050
 
  • M. Schwarz, E. Bründermann, D. El Khechen, B. Härer, A. Malygin, A.-S. Müller, M.J. Nasse, A.I. Papash, R. Ruprecht, J. Schäfer, M. Schuh, P. Wesolowski
    KIT, Karlsruhe, Germany
 
  The compact STorage ring for Accelerator Research and Technology (cSTART) project aims to store electron bunches of LWFA-like beams in a very large momentum acceptance storage ring. The project will be realized at the Karlsruhe Institute of Technology (KIT, Germany). Initially, the Ferninfrarot Linac- Und Test-Experiment (FLUTE), a source of ultra-short bunches, will serve as an injector for cSTART to benchmark and emulate laser-wakefield accelerator-like beams. In a second stage a laser-plasma accelerator will be used as an injector, which is being developed as part of the ATHENA project in collaboration with DESY and Helmholtz Institute Jena (HIJ). With an energy of 50 MeV and damping times of several seconds, the electron beam does not reach equilibrium emittance. Furthermore, the critical frequency of synchrotron radiation is 53 THz and in the same order as the bunch spectrum, which implies that the entire bunch radiates coherently. We perform longitudinal particle tracking simulations to investigate the evolution of the bunch length and spectrum as well as the emitted coherent synchrotron radiation. Finally, different options for the RF system are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB255  
About • paper received ※ 17 May 2021       paper accepted ※ 21 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB083 Effect of Negative Momentum Compaction Operation on the Current-Dependent Bunch Length 2786
 
  • P. Schreiber, T. Boltz, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: Funded by the European Union’s Horizon 2020 Research and Innovation programme, Grant Agreement No 730871. P.S, T.B are supported by DFG-funded Karlsruhe School of Elementary and Astroparticle Physics.
New operation modes are often considered during the development of new synchrotron light sources. An understanding of the effects involved is inevitable for a successful operation of these schemes. At the KIT storage ring KARA (Karlsruhe Research Accelerator), new modes can be implemented and tested at various energies, employing a variety of performant beam diagnostics devices. Negative momentum compaction optics at various energies have been established. Also, the influence of a negative momentum compaction factor on different effects has been investigated. This contribution comprises a short report on the status of the implementation of a negative momentum compaction optics at KARA. Additionally, first measurements of the changes to the current-dependent bunch length will be presented.
 
poster icon Poster WEPAB083 [1.129 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB083  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB103 Systematic Beam Parameter Studies at the Injector Section of FLUTE 2837
 
  • T. Schmelzer, E. Bründermann, D. Hoffmann, I. Križnar, S. Marsching, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski, T. Windbichler
    KIT, Karlsruhe, Germany
 
  Funding: This work is supported by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology (KSETA)"
FLUTE (Ferninfrarot Linac- und Test-Experiment) is a compact linac-based test facility for accelerator R&D and source of intense THz radiation for photon science. In preparation for the next experiments, the electron beam of the injector section of FLUTE has been characterized. In systematic studies the electron beam parameters, e.g., beam energy and emittance, are measured with several diagnostic systems. This knowledge allows the establishment of different operation settings and the optimization of electron beam parameters for future experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB103  
About • paper received ※ 19 May 2021       paper accepted ※ 01 September 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB251 Efficient Terahertz Generation by Tilted-Pulse-Front Pumping in Lithium Niobate for the Split-Ring Resonator Experiment at FLUTE 4299
 
  • M. Nabinger, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, J. Schäfer, T. Schmelzer, N.J. Smale
    KIT, Karlsruhe, Germany
  • M.M. Dehler, R. Ischebeck, M. Moser, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work is co-funded via the European Union’s H2020 research and innovation program, GA No 730871, ARIES.
A compact, longitudinal diagnostics for fs-scale electron bunches using a THz electric-field transient in a split-ring resonator (SRR) for streaking will be tested at the Ferninfrarot Linac- Und Test- Experiment (FLUTE). For this new streaking technique, intensive THz pulses are required, which will be generated by laser-based optical rectification. We present a setup for generating THz pulses using tilted-pulse-front pumping in lithium niobate at room temperature. Excited by an 800 nm Ti:Sa pump laser with 35 fs bandwidth-limited pulse length, conversion efficiencies up to 0.027% were achieved. Furthermore, the status of the SRR experiment is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)