Author: Plassard, F.
Paper Title Page
MOPAB041 Convergence Map with Action-Angle Variables Based on Square Matrix for Nonlinear Lattice Optimization 182
 
  • L.H. Yu, Y. Hidaka, F. Plassard, V.V. Smaluk
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  We apply square matrix method to obtain in high speed a "convergence map", which is similar but different from frequency map. The convergence map is obtained from solving nonlinear dynamical equation by iteration of perturbation method and study the convergence. The map provides information about the stability border of dynamical aperture. We compare the map with frequency map from tracking. The result indicates the new method may be applied in nonlinear lattice optimization, taking the advantage of the high speed (about 10~50 times faster) to explore x, y and the off-momentum phase space.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB041  
About • paper received ※ 09 May 2021       paper accepted ※ 26 May 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB227 Simultaneous Compensation of Phase and Amplitude Dependent Geometrical Resonances Using Octupoles 1960
 
  • F. Plassard, Y. Hidaka, Y. Li, T.V. Shaftan, V.V. Smaluk, G.M. Wang
    BNL, Upton, New York, USA
 
  As the new generation of light sources are pushing toward diffraction limited storage rings with ultra-low emittance beams, nonlinear beam dynamics become increasingly difficult to control. It is a common practice for modern designs to use a sextupole scheme that allows simultaneous correction of natural chromaticity and energy independent, or geometrical, sextupolar resonances. However, the remaining higher order terms arising from the cross talks of the sextupole families set a strong limitation on the achievable dynamic aperture. This paper presents a simulation-based recipe to use octupoles together with this sextupole scheme to provide simultaneous self-compensation of linear amplitude dependent tune shift together with phase-dependent octupolar and higher order geometrical resonant driving terms. The correction method was built based on observations made on a simple FODO model, then applied to a realistic low emittance lattice, designed in the framework of the upgrade of the National Synchrotron Light Source II (NSLS-II).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB227  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB197 Enhancing Efficiency of Multi-Objective Neural-Network-Assisted Nonlinear Dynamics Lattice Optimization via 1-D Aperture Objectives & Objective Focusing 4156
 
  • Y. Hidaka, D.A. Hidas, F. Plassard, T.V. Shaftan, G.M. Wang
    BNL, Upton, New York, USA
 
  Funding: This work is supported by U.S. DOE under Contract No. DE-SC0012704.
Mutli-objective optimizers such as multi-objective genetic algorithm (MOGA) have been quite popular in discovering desirable lattice solutions for accelerators. However, even these successful algorithms can become ineffective as the dimension and range of the search space increase due to exponential growth in the amount of exploration required to find global optima. This difficulty is even more exacerbated by the resource-intensive and time-consuming tendency for the evaluations of nonlinear beam dynamics. Lately the use of surrogate models based on neural network has been drawing attention to alleviate this problem. Following this trend, to further enhance the efficiency of nonlinear lattice optimization for storage rings, we propose to replace typically used objectives with those that are less time-consuming and to focus on a single objective constructed from multiple objectives, which can maximize utilization of the trained models through local optimization and objective gradient extraction. We demonstrate these enhancements using a NSLS-II upgrade lattice candidate as an example.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB197  
About • paper received ※ 20 May 2021       paper accepted ※ 23 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)