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Abstract 
Mutli-objective optimizers such as multi-objective ge-

netic algorithm (MOGA) have been quite popular in dis-
covering desirable lattice solutions for accelerators. How-
ever, even these successful algorithms can become ineffec-
tive as the dimension and range of the search space in-
crease due to exponential growth in the amount of explo-
ration required to find global optima. This difficulty is even 
more exacerbated by the resource-intensive and time-con-
suming tendency for the evaluations of nonlinear beam dy-
namics. Lately the use of surrogate models based on neural 
network has been drawing attention to alleviate this prob-
lem. Following this trend, to further enhance the efficiency 
of nonlinear lattice optimization for storage rings, we pro-
pose to replace typically used objectives with those that are 
less time-consuming and to focus on a single objective con-
structed from multiple objectives, which can maximize uti-
lization of the trained models through local optimization 
and objective gradient extraction. We demonstrate these 
enhancements using a NSLS-II upgrade lattice candidate 
as an example.  

INTRODUCTION 
Application of machine learning (ML) is gaining popu-

larity among many scientific fields including accelerator 
physics. One category of such applications is to train sur-
rogate models of complex nonlinear functions, tradition-
ally performed with time-consuming but accurate simula-
tions, with ML techniques to significantly speed up the cal-
culations of the functions at the cost of some loss in accu-
racy. For example, the strengths of sextupoles and/or octu-
poles in a storage ring lattice need to be often optimized to 
increase its on-momentum dynamic aperture (DA) for ad-
equate injection efficiency and its momentum aper-
ture (MA) for longer Touschek beam lifetime. However, 
evaluations of these objectives via particle tracking are ex-
pensive in terms of computation cost and time. 

To mitigate this bottleneck, a new optimization algo-
rithm called NBMOGA [1], based on the well-known 
multi-objective genetic algorithm (MOGA) [2], has been 
recently proposed. This optimizer initially proceeds ex-
actly the same way as MOGA, but past a certain number of 
generations (warm-up period), it starts to train a neural-net-
work-based surrogate model on the multi-objective values 
evaluated with a physics-based simulation code to approx-
imately predict the objectives. From that generation on, it 
uses the objective values estimated from the neural net-
work (NN) model, instead of the physics model, for the 

purpose of individual selection. This leads to substantial 
speed-up in the overall optimization process, as the objec-
tive evaluation duration is reduced from hours to millisec-
onds. 

In this paper, we propose two approaches to further en-
hance the speed of the nonlinear lattice optimization prob-
lem for storage rings utilizing NBMOGA. 

OBJECTIVE REPLACEMENTS 
The first approach is to replace the time-consuming ob-

jectives themselves to less time-consuming ones. 
NBMOGA enables much more exploration in the search 
space via fast NN model evaluations, but still requires 
many physics-based model evaluations to obtain training 
data and improve the NN model. Typically for the optimi-
zation problem we consider here, we evaluate full 2-D on-
momentum DAs and local MAs (LMA), as they are the 
most direct indicators of the most critical machine perfor-
mance metrics, namely, injection efficiency and Touschek 
beam lifetime. Particularly, LMA can take hours even for 
one lattice to calculate a reliable lifetime estimate. 

We propose to use the following five 1-D apertures (as 
shown in Fig. 1) to significantly reduce the time taken by 
physics-based model evaluations: Horizontal 1-D DAs 
(𝑥 ,  𝑥 ), vertical 1-D DA (𝑦 ), and 1-D MAs (RF & radi-
ation off) at the injection point (𝛿 ,  𝛿 ). Each aperture is 
determined by tracking a particle for ~ 100 turns for a full 
ring, gradually increasing the initial coordinate from zero, 
until a particle does not survive, or an integer/half-integer 
tune is crossed. These are chosen because every lattice that 
satisfies the 2-D DA and LMA requirements should neces-
sarily have large values for these objectives. By no means, 
having large values for these new objectives guarantees ac-
ceptable 2-D DA and LMA objectives, as they are not suf-
ficient conditions. But the advantage of reducing the eval-
uation time from 1-2 hours to 3-10 minutes for each lattice 
in our test case can justify the disadvantage of potentially 
converging to a lattice that does not quite meet the mini-
mum criteria. At least with these objectives, we can quickly 
identify unpromising base linear lattices and shift optimi-
zation efforts to other unexamined lattices. In other words, 
this approach serves as a rapid screening tool for promising 
linear lattices. 

This was tested on one of the upgrade candidate lattices 
for NSLS-II that has natural horizontal emittance of 40 pm 
and is a triple-complex-bend achromat (TCBA) [3, 4]. This 
optimization involved 12 chromatic and 8 harmonic octu-
poles as knobs, while the 1-D DA and MA scan ranges 
were limited to ±10 mm and ±4%, respectively. These lim-
its were applied in the interest of further reducing 
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evaluation time, as we expected these ranges give enough 
margin over our tentative soft requirements of ±5 mm hor-
izontal DA and 1-2 hr lifetime. The results of optimization 
progress for 50 generations for MOGA and NBMOGA are 
shown in Fig. 2. The population size was 1000 for both. 
The warm-up period of NBMOGA was 10 generations. 
Hence the Pareto fronts are the same until that generation. 
A sudden acceleration in NBMOGA is clear after the 
warm-up period. MOGA quickly converged, but to a far 
inferior lattice. Python DEAP library [5] was used for ge-
netic algorithm implementation in both MOGA and 
NBMOGA. 

 

 
(a)       (b) 

Figure 1: Proposed five 1-D aperture definitions for faster 
physics-based model evaluations in an example of (a) on-
momentum frequency map and (b) off-momentum one. 

 

 
(a)      (b) 

Figure 2: Pareto fronts of (a) MOGA and (b) NBMOGA 
for a 40-pm NSLS-II upgrade candidate lattice. 

The NBMOGA run took 0.5-2 hr per generation (i.e., 
1000 lattice evaluations) with 200 cores (100 physical 
cores with hyperthreading; Intel Xeon CPU E5-2699 v4 
2.20 GHz). If more computing resources are available, the 
run time should decrease almost linearly down to about 
6-24 minutes per generation with 1000 cores, for example, 
as these evaluations are embarrassingly parallel calcula-
tions. Note that the optimization takes less time initially 
and gradually takes longer as it finds better lattice solutions 
for which DA and MA are larger and hence more tracking 
calculations are required. 

As mentioned earlier, if the optimization results at this 
point are not promising at all, we can decide to move onto 
another linear lattice for which we have not yet optimized. 
However, sometimes it is worth adjusting the objectives 
and re-optimize instead. For instance, as shown in Fig. 3, a 
lattice with a minimum LMA of 1.8% (Fig. 3a) and lifetime 
of 0.86 hr (100% coupling) was found after an optimiza-
tion. Upon inspecting its off-momentum frequency map 
(Fig. 3b), it appeared that the poor horizontal DA on the 

negative momentum side is ruining the good DA on the 
positive side due to synchrotron motions. If we could pull 
the off-momentum aperture envelope to the negative mo-
mentum side at the points denoted by the red circles 
(𝑥   2.5 mm), we may be able to increase LMA. With 
this conjecture, we added 2 more objectives: 𝛿 𝑥  2.5 mm  and 𝛿 𝑥 -2.5 mm . After re-optimi-
zation, we found a new lattice with a minimum LMA of 
2.4% (Fig. 4a), resulting in increased lifetime of 2.6 hr. Fig-
ure 4b shows that this optimization filled in the previously 
void regions in the frequency map as intended. This 
demonstrates usefulness of iterative customization of 
multi-objectives. Note that this iterative process is enabled 
because of the much-reduced optimization run time with 
the nominal 5 objectives. 

       

  
Figure 3: (a) LMA and (b) off-momentum frequency map 
for a lattice after optimizing with the 5 multi-objectives. 

 

 
Figure 4: (a) LMA and (b) off-momentum frequency map 
for a lattice after optimizing with 2 additional MA objec-
tives 𝛿  at 𝑥 ±2.5 mm. 
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OBJECTIVE FOCUSING 
Another approach to improve efficiency is to utilize sin-

gle objectives with local optimizers. At the end of a multi-
objective optimization run, we typically obtain a Pareto 
front with many lattices that have very good DA, but very 
poor lifetime, or vice versa. These do not satisfy minimum 
requirements and will never be selected as a viable solu-
tion. To avoid potentially wasteful computations for these 
extreme unpromising individuals in the population, we can 
sum the multi-objectives into a single objective in a way to 
impose minimum required objectives, then use it to guide 
the optimization direction. With multiple objectives fo-
cused into a single objective, we can also utilize many 
available local optimizers that are usually much faster and 
efficient than global multi-objective optimizers. Further-
more, since a NN surrogate model built with popular ma-
chine learning libraries such as tensorflow [6] and 
PyTorch [7] is equipped with automatic differentiation, we 
can easily extract gradients of the single objective when 
evaluating the function values from the NN model. This 
leads to significant speed boost of a gradient-based local 
optimizer. 

We constructed the following single objective 𝑓 to be 
minimized: 

 𝑓 |𝑥 | |𝑥 | |𝑦 | mm   selt 𝛿 , 3%, 0.1% segt 𝛿 , 3%, 0.1% , 
 

where “selt” and “segt” are the soft-edge less/greater-than 
penalty functions defined in ELEGANT [8]: 
 

selt 𝑥, 𝑥∗, tol 0 if 𝑥 𝑥∗𝑥 𝑥∗tol  otherwise,
 

 and “segt” is similarly defined except that the inequality 
direction is opposite. This objective encourages optimiza-
tion to reach |𝛿| 3% to have acceptable Touschek life-
time by adding a relatively large positive value in the sec-
ond term. Once this minimum requirement on MAs is 
cleared, the second term becomes zero and stays neutral, 
while the optimizer continues to keep decreasing the first 
term (i.e., increasing the DA objectives). 

In NBMOGA we implemented, in each generation, 
multi-objectives are predicted once from the NN model 
and use the non-dominated sorting genetic algorithm II 
(NSGA-II) [9] on these predicted values to select individ-
uals to keep for next generation. The main difference in the 
objective-focused NBMOGA is that we run a local opti-
mizer for each individual in an expanded candidate pool as 
in NBMOGA to minimize the single objective based on the 
multi-objective values predicted from the surrogate model 
repeatedly. From the optimized candidate individuals, a 
new population is selected according to the best predicted 
scores of the single objective and later evaluated with phys-
ics-based simulations. We used the L-BFGS-B algo-
rithm [10] as our local optimizer, as it can impose bounds 
on input variables as well as utilize gradients. 

The comparison between NBMOGA and objective-fo-
cused NBMOGA for the same test lattice used in the pre-
vious section is shown in Fig. 5. Once the warm-up period 
was over, the objective-focused case made an enormous 
jump. But the progress immediately slowed down and was 
eventually taken over by NBMOGA. Upon inspection of 
individual distributions, it appears that the excessive focus-
ing by selecting new generations entirely based on the sin-
gle objective resulted in a rapid loss of diversity. This 
likely made the population unable to create sufficiently di-
verse candidate individuals via genetic operations and thus 
getting stuck at a local minimum. A further algorithmic 
search is currently underway to balance between objective 
focusing and genetic diversity to boost the convergence 
speed while maintaining sufficient exploration capacity. 

 

 
Figure 5: Cumulative best single objective history for 
NBMOGA with and without objective focusing. 

 

Lastly, use of gradients for the local optimizer reduced 
the number of model evaluations required to converge by 
an order of magnitude, compared to the case when gradi-
ents were not utilized. Although the local optimization 
steps are not the dominant part of the overall optimization 
process in terms of run time, it is still worth avoiding un-
necessary calculations wherever possible. 

CONCLUSION 
A speed boost by an order of magnitude for NBMOGA 

nonlinear beam dynamics optimization for storage rings 
was demonstrated by replacing typical time-consuming 
2-D DA and lifetime evaluations with 1-D DA and MA 
evaluations. This allows a much quicker assessment on 
whether the base linear lattice is promising, although it 
comes at the potential cost of converging to sub-optimal 
results. When the results are not satisfactory, the multi-ob-
jectives can be also iteratively tweaked to guide optimiza-
tion for improvement. Objective focusing can further ac-
celerate NBMOGA, but needs more work to balance focus-
ing against diversity to find better solutions. 
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