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Abstract
We apply square matrix method to obtain in high speed

a "convergence map", which is similar but different from
frequency map [1]. The convergence map is obtained from
solving nonlinear dynamical equation by iteration of per-
turbation method and study the convergence. The map pro-
vides information about the stability border of dynamical
aperture.We compare the map with frequency map from
tracking. The result indicates the new method may be ap-
plied in nonlinear lattice optimization, taking the advantage
of the high speed (about 10~50 times faster) to explore x, y
and the off-momentum phase space.

INTRODUCTION: SQUARE MATRIX
EQUATION FOR NONLINEAR DYNAMICS
We consider the equations of motion of a nonlinear dy-

namic system with periodic structure such as Hills equation,
it can be expressed by a square matrix.
If we use the complex Courant-Snyder variable 𝑧 = 𝑥 − 𝑖𝑝,

its conjugate and powers 𝑧, 𝑧∗, 𝑧2, ... as a column 𝑍, the one
turn map can be represented by a large square matrix 𝑀
using

𝑍 = 𝑀𝑍0.

All square matrices can be transformed into Jordan
form [2, 3]. A detailed description is given, e.g., in [4, 5].
For any given square matrix 𝑀, for an eigenvalue 𝜇 which
is the linear tune, there is a transformation matrix 𝑈 and
a Jordan matrix 𝜏 so that every row of the matrix 𝑈 is a
(generalized) left eigenvector of 𝑀 satisfying

𝑈𝑀 = 𝑒𝑖𝜇𝐼+𝜏𝑈 (1)

For the case of 4 variables 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦 (to be abreviated
as 𝑋 in the following ), at 3rd order , the colum becomes
𝑍 = 𝑧𝑥,𝑧∗

𝑥, 𝑧𝑦,𝑧∗
𝑦, 𝑧2

𝑥 , 𝑧𝑥𝑧∗
𝑧 , ..., the matrix 𝑀 is a 35×35 matrix,

𝐼 is a 2×2 identity matrix, the matrixes 𝑈𝑥 and 𝑈𝑦 are 2×35
transformation matrix, while the Jordan matrix 𝜏 also has
dimension 2 for both eigenvalue 𝜇𝑥 and 𝜇𝑦. For tune 𝜇𝑥 or

𝜇𝑦 the Jordan matrix 𝜏 has the form 𝜏 = [0 1
0 0] .

As after one turn 𝑍1 = 𝑀𝑍0, Eq. (1) gives
𝑈𝑥𝑍 = 𝑈𝑥𝑀𝑍0 = 𝑒𝑖𝜇𝑥𝐼+𝜏𝑈𝑥𝑍0. Define a transformation
𝑊𝑥0 ≡ 𝑈𝑥𝑍0, 𝑊𝑥1 ≡ 𝑈𝑥𝑍1. And, for 𝑦, there are corre-
spondingly 𝑈𝑦, 𝑊𝑦 respectively, so in the next paragraph we
neglect the subscript for 𝑥, 𝑦:

𝑊 represents the projection of the vector 𝑍 onto the in-
variant subspace spanned by the left eigenvectors 𝑢𝑗 given
by the 𝑗’th row of the matrix 𝑈, such that 𝑗’th row of 𝑊
is 𝑤𝑗 = 𝑢𝑗𝑍, a polynomial of 𝑧𝑥,𝑧∗

𝑥, 𝑧𝑦,... Then Eq. (1)

implies the operation of one turn map 𝑍1 = 𝑀𝑍0 corre-
sponds to a rotation in the invariant subspace represented
by 𝑊1 = 𝑒𝑖𝜇𝐼+𝜏𝑊0. After 𝑛 turns, if linear tune is 𝜇 and
tune shift is 𝜙, the particle has a tune 𝜇 + 𝜙, we must have
𝑊 = 𝑒𝑛(𝑖𝜇𝐼+𝜏)𝑊0 ≅ 𝑒𝑖𝑛(𝜇+𝜙)𝑊0. Hence we must have
𝜏𝑊0 ≅ 𝑖𝜙𝑊0. For the case of 4 variables 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦 at 3th
order, 𝑈 is a 2 × 35 matrix and 𝑊0 = {𝑤0, 𝑤1} are two poly-
nomials each has 35 terms of monomials with power up to
3rd order, and 𝜏𝑊0 ≅ 𝑖𝜙𝑊0 gives 𝜙 = −𝑖𝑤1/𝑤0 as the
tune shift. This has been confirmed using tracking results
for many lattices,
And, in particular, our tracking results confirmed that the

polynomials 𝑤𝑥0, 𝑤𝑥1, 𝑤𝑦0, 𝑤𝑦1, are excellent action-angle
variables: after each turn they are multiplied by a factor
𝑒𝑖𝑛(𝜇+𝜙) to a good approximation, ie. the trajectory rep-
resented by these variables follow a circle with very small
deviation from a rotation with uniform rotation speed. Hence
we can use their linear combination to form two better action-
angle variables, i.e., with smaller deviation from a circle.
For the 4 variable case in the following, to distinguish 𝑥 from
𝑦, we have

𝑣1(𝜃1) ≡ 𝑟1𝑒𝑖𝜃1 ≡ 𝑎11𝑤𝑥0(𝑥, 𝑝)+
𝑎12𝑤𝑥1(𝑥, 𝑝) + 𝑎13𝑤𝑦0(𝑥, 𝑝) + 𝑎14𝑤𝑦1(𝑥, 𝑝) (2)
𝑣2(𝜃2) ≡ 𝑟2𝑒𝑖𝜃2 ≡ 𝑎21𝑤𝑥0(𝑥, 𝑝)+
𝑎22𝑤𝑥1(𝑥, 𝑝) + 𝑎23𝑤𝑦0(𝑥, 𝑝) + 𝑎24𝑤𝑦1(𝑥, 𝑝)

We establish one turn map using 𝜃1, 𝜃2 as dynamic vari-
ables, i.e, we consider 𝜃1,𝑘+1, 𝜃2,𝑘+1 as function of 𝜃1𝑘, 𝜃2𝑘
(𝑘 is the turn number): For a given 𝜃1𝑘, 𝜃2𝑘 we find 𝑋𝑘 by
the inverse function of Eq. (2) . From the one turn map
for 𝑋𝑘 we find 𝑋𝑘+1. Then we use Eq. (2) again to obtain
𝑣1(𝜃𝑘+1), 𝑣2(𝜃𝑘+1) , then use them to obtain 𝜃1,𝑘+1, 𝜃2,𝑘+1.
This one turn map between 𝜃1,𝑘+1, 𝜃2,𝑘+1 and 𝜃1𝑘, 𝜃2𝑘 can
be calculated exactly, independent from the power order of
𝑀, and we can derive an exact equation, even if we take only
3rd order for the Jordan decomposition. If there are quasy-
periodic solution we use 𝛼1 ≡ 𝑘𝜔1 + 𝜃0, 𝛼2 ≡ 𝑘𝜔2 + 𝜃0 to
represent phase advance as turn number 𝑘, the equation for
𝜃1(𝛼1, 𝛼2), 𝜃2(𝛼1, 𝛼2) is

𝜃1(𝛼1 + 𝜔1) − 𝜃1(𝛼1) = 𝜔1 + Δ𝜙1(𝜃1(𝛼1, 𝛼2), 𝜃2(𝛼1, 𝛼2))
𝜃2(𝛼2 + 𝜔2) − 𝜃2(𝛼2) = 𝜔2 + Δ𝜙2(𝜃1(𝛼1, 𝛼2), 𝜃2(𝛼1, 𝛼2))

(3)

where 𝜔1 ≡ 𝜙1, 𝜔2 ≡ 𝜙2 is the phase advance rate of
𝑣1, 𝑣2 per turn, averaged over many turns, corresponding
to 𝑥, 𝑦 tunes. Δ𝜙1, Δ𝜙2 are the fluctuation from 𝜔1, 𝜔2.
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Figure 1: Points in initial 𝜃(0)
1 (𝛼1, 𝛼2), 𝜃(0)

2 (𝛼1, 𝛼2), and
their distribution after one turn.
If 𝑣1, 𝑣2 are sufficiently close to a pure rotation, then
|Δ𝜙1| , |Δ𝜙2| ≪ 1. The real part of |Δ𝜙1|, |Δ𝜙2| are the
phase fluctuation, and its imaginary part is the amplitude
fluctuation. This exact equation can be solved by perturba-
tion: initially we take zero order approximation 𝜃(0)

1 = 𝛼1,
𝜃(0)

2 = 𝛼2. When this is substituted to the right hand side of
Eq. (3), since |Δ𝜙1|, |Δ𝜙2| ≪ 1 the error is of second order.
Then the equation can be solved using Fourier transform,
the result is the first order approximation 𝜃(1)

1 , 𝜃(1)
2 . Then

𝜃(1)
1 , 𝜃(1)

2 is substituted in the right hand side of Eq. (3)
to obtain 𝜃(2)

1 , 𝜃(2)
2 as 2nd order approximation. This pro-

cess can be iterated to generate convergent solution to high
precision if the amplitude of zero’th order 𝑋(0) (obtained
from 𝜃(0)

1 , 𝜃(0)
2 ) is sufficiently close the origin, or, within the

dynamical aperture.
The main issue is the convergence of this iteration pro-

cess. In the case in the neighbourhood of a pure rotation,
KAM theory [6–9] proved the existence of analytical so-
lution. In our practical application, we study the periodic
solution exploring area with large amplitude or near reso-
nance, numerically. In our application of this method, we
add one step to each step in the iteration: we minimize the
fluctuation by varying the coefficients 𝑎1𝑗, 𝑎2𝑗 in Eq. (2).
Because this step always reduce the fluctuation, it makes
the intermediate solution more close to a pure rotation, and
hence makes the convergence faster and within larger range.
With these provision, we discuss the numerical application
of this iteration steps in the following.

NUMERICAL APPLICATION:
CONVERGENCE MAP

In practical numerical application, 𝛼1, 𝛼2 take only dis-
crete number of points within (0, 2𝜋), one of the main pa-
rameters is the number of points 𝑛𝜃. In Fourier transform
of Eq. (3) the variables 𝜃1, 𝜃2 and 𝛼1,𝛼2 also take discrete
values at 𝑛2

𝜃 points in the 𝜃1, 𝜃2 plane. Figure 1 is an illus-
tration of 𝜃(0)

1 (𝛼), 𝜃(0)
2 (𝛼) and their result of tracking them

one turn.
In the following example of numerical application of the

iteration steps, we use the matrix 𝑀 derived from one of the
lattices for NSLSII storage ring “20140204_bare_1supcell”.
We use four polynimials𝑤𝑥0, 𝑤𝑥1, 𝑤𝑦0, 𝑤𝑦1 derived from Jor-
dan vector of power order 3, and corresponding linear com-
bination coefficients {𝑎(𝑛)

1𝑗 , 𝑎(𝑛
2𝑗}, 𝑗 = 0, 1, 2, 3 in step 𝑛. Inini-

Figure 2: a) ln(𝛿𝑋𝑛) vz. Iteration number 𝑛 b) Minimum
of ln 𝛿𝑋𝑛 vz. 𝑥 , the red line is where iteration diverges for
both 𝑛𝜃 =25 and 30.

tially we take 𝑎1 = 1, 0, 0, 0, 𝑎2 = 0, 0, 1, 0. So initially we
only use 𝑤𝑥0, 𝑤𝑦0 for 𝑣(0)

1 and 𝑣(0)
2 respectively, as iteration

n increases the contribution from 𝑎11, 𝑎12𝑎13𝑎20, 𝑎21, 𝑎22
vary from 0 to improve the precision of 𝑋(𝑛) closer to real
trajectory.
For a trajectory starting from 𝑥 = −22 mm,

𝑦 =4 mm, 𝛿𝑝 = −0.025, very close to dynamic aperture,
when we take 𝑛𝜃 = 12, the iteration leads to convergence as
shown in Fig. 2a. For each step, we calculate the solution
𝑋𝑛 at step 𝑛. The difference between the solution at step 𝑛
and 𝑛 − 1 is 𝛿𝑋𝑛 = 𝑋(𝑛) − 𝑋(𝑛−1). We use the sequence the
RMS value of 𝛿𝑋𝑛 as Cauchy criterion for convergence test.
The convergence is indicated by the exponential decay of
𝛿𝑋𝑛 as function of 𝑛 in Fig. 2a. When we use tracking by
“elegant” [10] to calculate the one turn map from 𝑥𝑘, 𝑝𝑘 to
𝑥𝑘+1, 𝑝𝑘+1, as the right hand side of Eq.(3), the minimum
of ln(𝛿𝑋𝑛) (orange) is -17 at the last iteration labeled as
’ELEGANT’. Another way to use square matrix of power
order 5 constructed using Truncated Power Series Algebra
(tpsa) [11–15]. The result is the blue dots (“tpsa”) with the
minimum at -17.5. Notice that even though the Jordan vector
for the action-angle variables is of power order 3, the one
turn map can be exact, as given by “elegant” tracking, or
approximated by square matrix of power order 5 or 7. The
results have almost same convergence rate, and at the end of
the iteration, the trajectory difference is very small (order of
𝑒−17 = 4 × 10−8 mm).
For a scan from 𝑥 = -1 mm to -18 mm for every mm, we

plot the minimum of iteration for each 𝑥 in Fig. 2b, with
𝑛𝜃 = 12. The maximum iteration number is set at 𝑛 = 4.
The blue curve is the number of iterations reached vs. 𝑥. For
𝑥 < − 25 mm and the resonance at 𝑥 = − 8 mm the iteration
diverges while for other 𝑥 the iteration converges. The red
line in Fig. 2b represents the position where the iteration for
𝑛𝜃 = 25, 30 both diverge. This provides information about
dynmical aperture and the relation between divergence and
𝑛𝜃. When 𝑛𝜃 increases the dynamical aperture reduces. This
topic of the relation between maximum 𝑛𝜃 of convergence,
iteration stability, and the aperture will be addressed in future
publication because the limited space.
The same iteration for initial value over the 𝑥𝑦 plane with

initial value of 𝑝𝑥, 𝑝𝑦 = 0, Δ𝑝 = −2% is shown in Fig. 3a
with 𝑛𝜃 = 10. The minmum of ln(𝛿𝑋𝑛) is represented
by the color scale. For the total number of scan points
81 × 41 = 3321, the cpu time for this map is 131 seconds
using 1 cpu core of the computer. The white area represents
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Figure 3: a) ln(𝛿𝑋𝑛) as color scale for iteration scan over 𝑥𝑦
plane for Δ𝑝 = −2% b) Frequency diagram for same scan
from ’elegant’.

Figure 4: a) Trajectory in 𝑥𝑝𝑥 plane within the range -3 mm
< 𝑦 < 3 mm, blue (tracking by “elegant”), orange (square ma-
trix iteration). b) Trajectory in 𝑣1 complex plane (tracking:
light blue) (square matrix iteration:red).

divergence of the iteration. We refer this map as a conver-
gence map. As a comparison, the frequency map [1] using
same number of points is shown is Fig. 3b. The cpu time
with same computer used 40 core with 40 seconds, corre-
sponding to 1600 seconds for one core. These two maps
are entirely different maps, but both provide similar space
structure. This suggests that the convergence map can be
used in the nonlinear lattice optimization.
We use one point as an example to show the precision

of the iteration result, i.e. initial value 𝑥 = − 22 mm,
𝑦 = 4 mm, Δ𝑝 = −2.5%. Figure 4a compares trajectory
in 𝑥, 𝑝𝑥 plane calculated from elegant and from last itera-
tion. The blue points are tracking, the 12 points (orange)
are the iteration result. Figure 4b show the trajectory in 𝑣1
complex plane. Dark blue dots represent initial trial 𝑣(0)

1 ,
calculated with initial 𝜃(0)

1 (𝛼1), 𝜃(0)
2 (𝛼2) and 𝑛𝜃 = 12. The

red dots represent the result of 𝑣(𝑛)
1 at the end of the iteration.

The light blue dots represent 𝑣(𝑛)
1 calculated from tracking

trajectory 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦 for 1024 turns. There is a very good
agreement between tracking and iteration results.
In tracking result, the particle lost at 𝑁 = 5448 turns. Sim-

ilarly when 𝑛𝜃 increased to 17, the iteration diverges. There
is a qualitative relation between 𝑛2

𝜃 when iteration diverges
and number of turns 𝑁 when particle lost, obtained from nu-
merical experiences. We have some intuitive understanding
of this relation, but lack an analytical analysis so far.
The spectrum of 𝑣(𝑛)

1 for 𝑥 = −21 mm is shown in Fig. 5a.
The main peaks are normalized 1 (outside of the plot). The
fluctuation peaks (red-yellow 𝑣(𝑛−1) and green 𝑣(𝑛) dots)
agree well with tracking blue with peak (magenta dots) even
with limitted 𝑛𝜃 = 12 for 𝑥 = −21 mm. Figure 5b shows
the tune footprint in 𝜈𝑥, 𝜈𝑦 plane, the square matrix tune at
the last iteration agree well with tracking except for points

Figure 5: a) Spectrum of 𝑣(𝑛)
1 at the last iteration 𝑛. b) tune

footprints in 𝜈𝑥, 𝜈𝑦 plane.

where the iteration diverges and particle lost in the tracking
(represented by crosses).

ITERATION SPEED

The time spent on a convergence map consists of two
parts. The first part is the construction of square matrix
using data extract from lattice file (e.g. an ’elegant’ lte file).
For a 5th order 126 × 126 matrix used for one turn map and
a 3rd order 35 × 35 matrix with its Jordan decomposition,
the time is 1.7 sec. The second part is the iteration time for
all the grid points on 𝑥𝑦 plane. In the example we tested for
Fig. 3 the number of points is 81 × 41 = 3321, the iteration
time is 131 sec for one core on the cluster at NSLSII. So
the time of iteration per point is 131/3321=39ms/core. For
the frequency diagram of Fig. 3b, for the same number of
points, the tracking time using 40 core on the same cluster
is 40 sec. So the time is 40 × 40/3321 =480ms/core.
If the number of points used in the optimization is less,

for example if it is 280 points for a map, then the time for
one map is 280 × 39 ms +1.7 sec =12.6 sec/core for iteration
by square matrix method. The time for tracking would be
280 × 0.48 sec = 134.4 sec for a map. So for this lattice
for one superperiod of the ring, the ratio of time on square
matrix over tracking is 134/12.6 =11 times faster. However
if we need to study a lattice without 15 fold symmetry (e.g. ,
a lattice with errors), the time ratio will be different. In this
case the time on square matrix construction increases by 15
times. The iteration time would be the same as before, so
the total time is 280 × 39 ms+15 × 1.7 sec =36.4 sec/core.
The tracking time would be increased by 15 times to 2016
sec. The ratio would be 2016/36.4 = 55 time faster.

CONCLUSION

The action-angle variables derived from square matrix
method is close to a pure rotation, so that an iteration steps
developed using perturbation method to solve the nonlinear
dynamical equation are convergent up to dynamical aperture.
The convergence rate is plotted over 𝑥𝑦 plane as color scale.
This convergence map is similar but different from frequency
map calculated by tracking. The results agree with tracking
well on dynamical aperture, tune footprint and space trajec-
tory, and frequency spectrum. The iteration method is about
10~50 times faster than tracking, hence it has a potential to
be used for nonlinear optimization.
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