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Abstract
As the new generation of light sources are pushing toward

diffraction limited storage rings with ultra-low emittance
beams, nonlinear beam dynamics become increasingly diffi-
cult to control. It is a common practice for modern designs to
use a sextupole scheme that allows simultaneous correction
of natural chromaticity and energy independent, or geomet-
rical, sextupolar resonances. However, the remaining higher
order terms arising from the cross talks of the sextupole
families set a strong limitation on the achievable dynamic
aperture. This paper presents a simulation-based recipe to
use octupoles together with this sextupole scheme to pro-
vide simultaneous self-compensation of linear amplitude
dependent tune shift together with phase-dependent octupo-
lar and higher order geometrical resonant driving terms. The
correction method was built based on observations made
on a simple FODO model, then applied to a realistic low
emittance lattice, designed in the framework of the upgrade
of the National Synchrotron Light Source II (NSLS-II).

STUDY GOAL
The sextupole scheme required for chromaticity correction

open the box to a wide panel of nonlinear aberrations or
resonant driving terms (RDTs) that consequently impact the
stability of the particles at large amplitudes. The cross-talks
between sextupoles RDTs generate amplitude dependent
tune shift (ADTS), second and higher order phase-dependent
terms affecting the overall efficiency of the machine, mainly
characterized by its dynamic and momentum aperture. Large
dynamic aperture (DA), defining the area in the phase-space
within which the particle motion stays stable, is essential for
efficient beam injection.

Lattice solutions with optimized phase-advance, forming
an identity transformation matrix −ℐ𝑥,𝑦 between chromatic
sextupole pairs, allowing self-cancellation of sextupole-like
geometrical terms [1–3], have been extensively applied in
high energy colliders but also in several upgrades to 4th

generation light sources [4–8]. The remaining higher order
RDTs and especially the ADTS, are usually minimized via
additional sextupoles in zero-dispersion region, called har-
monic sextupoles. Due to the complex mechanism governing
second order perturbation on the beam dynamics, the har-
monic sextupoles are optimized by means of numerical tools
and high performance computers to explore and optimize
the parameter space. A different way of correcting second
order effects of the sextupoles is to use octupole magnets.
Octupoles have been studied for their efficient cancellation
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of linear amplitude detuning terms [9–11]. However, while
correcting the linear ADTS, octupoles generate additional
nonlinear perturbations that can rapidly limit the machine
performance. Notably, 𝑠-dependent octupolar resonances
can add up with the ones produced to the second order by the
sextupoles [12,13]. In addition, cross-talks among sextupole
and octupole RDTs, produce important higher order terms,
contributing to the more chaotic behavior of the particles.
Minimizing those additional effects with octupoles, is the
main goal of this study.

Our nonlinear scheme uses octupole triplets, powered to
cancel linear ADTS, for which their location is optimized
w.r.t the sextupole pairs, separated by a −ℐ𝑥,𝑦 matrix, to pro-
duce octupole-like RDTs that systematically counteract the
ones generated to the second order by the sextupoles. As a
domino effect, the resulting higher order geometrical RDTs,
simulated up to the dodecapole order, are consistently mini-
mized at the optimal octupole location. The effectiveness
of the scheme has been demonstrated on a simple FODO
model and on a realistic lattice option for the NSLS-II up-
grade, for which good agreement with the model predictions
have been observed, leading to a significant increase of the
on-momentum DA, without the intervention of numerical
optimization tools.

OBSERVATIONS ON FODO MODEL

In order to built a correction method applicable to most
modern light source designs, a toy model, simulating the
−ℐ𝑥,𝑦 sextupole pairs configuration, was used. A FODO lat-
tice is created and two pairs of sextupoles are inserted at the
peaks of 𝛽𝑥,𝑦 and are separated by a horizontal and vertical
phase-advances Δ𝜇S

𝑥,𝑦 = (2𝑛 + 1)𝜋. The betatron ampli-
tude, phases and magnet strength conditions, form an exact
−ℐ𝑥,𝑦 transformation between the sextupole pairs. Three
octupoles are then placed close to each other at locations
of high 𝛽𝑥

𝛽𝑦
, high 𝛽𝑦

𝛽𝑥
and 𝛽𝑥

𝛽𝑦
≈ 1, in order to correct, with

minimal strength, for the linear anharmonicities 𝛼𝑥𝑥 = 𝜕𝜈𝑥
2𝐽𝑥

,

𝛼𝑦𝑦 = 𝜕𝜈𝑦
2𝐽𝑦

and 𝛼𝑥𝑦 = 𝜕𝜈𝑥
2𝐽𝑦

= 𝜕𝜈𝑦
2𝐽𝑥

, respectively. The strength
of the octupole triplet is calculated analytically, as described
in [9, 10], by solving the linear system as in Eq. (1):

⃗𝑘oct = 𝒰−1
oct.�⃗�, (1)

where ⃗𝑘oct is the vector strength of the 3 octupoles, �⃗� contains
the three direct and cross terms of the linear ADTS that were
calculated here using the tracking code PTC [14], and 𝒰oct is
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the 3 × 3 matrix defined from the lattice optical functions as:

𝒰oct = 1
8𝜋

⎛⎜⎜⎜⎜
⎝

1
2𝛽2

𝑥|oct1
1
2𝛽2

𝑥|oct2
1
2𝛽2

𝑥|oct3
1
2𝛽2

𝑦|oct1
1
2𝛽2

𝑦|oct2
1
2𝛽2

𝑦|oct3
−𝛽𝑥𝛽𝑦|oct1 −𝛽𝑥𝛽𝑦|oct2 −𝛽𝑥𝛽𝑦|oct3

⎞⎟⎟⎟⎟
⎠

. (2)

The impact of the octupole triplet location is observed for
various different positions in the model, illustrated in Fig. 1,
with the same 𝛽-function conditions and thus with the same
strength ⃗𝑘oct for an exact cancellation of the anharmonicities.
For each location, all RDTs are re-calculated at the end of
the optics sequence. This scan shows the impact of octupole
triplet positions, when powered for the same correction of
linear ADTS, on the amplitude of the RDTs. The scan has
been applied for various conditions of Δ𝜇S

𝑥,𝑦, e.g., (𝜋,𝜋),
(3𝜋,3𝜋), (3𝜋,𝜋), etc. The results in Fig. 2 show the sum
of all geometrical s-dependent hamiltonian RDTs (as de-
fined in [15, 16]) of order 𝑛 = 4, on the left side, and all
dodecapole geometrical RDTs (𝑛 = 6), on the right side,
calculated at each position of the octupole triplet along the
FODO lattice. It is clear from the different scans performed,
that particular positions of the triplet, w.r.t to the sextupoles,
present significant compensation of these terms. Figure 2
also shows that the level of dodecapole RDTs, that include
2nd order ADTS, is always increased by several order of mag-
nitude, except for these optimal octupole positions. Similar
compensation are observed for decapole RDTs (𝑛 = 5). The
pattern that emerge for every FODO model simulated, and
only if Δ𝜇S

𝑥,𝑦 = (2𝑛+1)𝜋, is that the compensation appears
when the octupole triplet is located at

Δ𝜇O−S
𝑥,𝑦 = 𝑚 × Δ𝜇S

𝑥,𝑦, (3)

where 𝑚 is an integer. When these conditions are met, all
the geometrical RDTs of order 𝑛 = 4 generated to the first
order by the octupoles (ℎ𝑗𝑘𝑙𝑚|Oct) and to the second order by
the sextupoles (ℎ𝑗𝑘𝑙𝑚|Sext) always counteract each other, i.e,
their real and imaginary parts have opposite signs and

Im(ℎ𝑗𝑘𝑙𝑚|Sext)
Re(ℎ𝑗𝑘𝑙𝑚|Sext)

=
Im(ℎ𝑗𝑘𝑙𝑚|Oct)
Re(ℎ𝑗𝑘𝑙𝑚|Oct)

. (4)

This ensure a systematic partial compensation of all the
phase-dependent geometrical RDTs of order 𝑛 = 4, simulta-
neously with the cancellation of the linear ADTS coefficients.
In addition, the scheme ensure minimal strength of higher
order terms, providing the conditions for a quasi full geo-
metrical correction of the system.

SCHEME APPLIED ON LATTICE
When designing low emittance lattices, constraining

the phase-advances between octupoles and sextupoles to
Δ𝜇O−S

𝑥,𝑦 = 𝑚 × Δ𝜇S
𝑥,𝑦 with 𝑚 ≠ 0, is in practice trouble-

some. One simple optimal location for the triplet, is in phase
with the chromatic sextupoles (𝑚 = 0). However, the oc-
tupoles will be inevitably placed in dispersion region and
will therefore impact nonlinear chromaticity. As a proof-of-
principle, the octupole scheme has been tested on one of

Figure 1: Schematic of the octupole triplet position scan.
Δ𝜇O−S

𝑥,𝑦 is the phase-advance between the octupole triplet
and the first sextupole. Δ𝜇S

𝑥,𝑦 is the phase advance between
the sextupoles and is equal to (2𝑛 + 1)𝜋.

Figure 2: Sum of geometrical octupole (order 𝑛 = 4) (left)
and dodecapole (order 𝑛 = 6) RDTs, as function of the posi-
tion of the octupole triplet (vertical lines). The ℎ2200, ℎ0022
and ℎ1111 terms, driving linear ADTS are not included in the
sum. The position scan has been applied for Δ𝜇S

𝑥,𝑦 = 𝜋, 𝜋.
The value of the RDT sum drops drastically at the sextupole
location (𝑚 = 0) and at Δ𝜇O−S

𝑥,𝑦 = 𝑚 × Δ𝜇S
𝑥,𝑦. The black

dashed line shows the sum value without octupoles.

the lattice options optimized for the upgrade of the NSLS-II.
The cell design and optical functions are shown in Fig. 3.
This preliminary option provides an equilibrium horizon-
tal emittance of 𝜖𝑥 = 25.3 pm at a beam energy of 3 GeV,
while fitting the tunnel of the existing NSLS-II ring and
meeting all the optical parameter constraints required for the
upgrade. The low emittance is achieved primarily thanks
to the use of the novel Complex Bend (CB) magnet, which
consists of a single element with conventional electromagnet
dipole poles of same field polarity, superposed with strong
focusing and defocusing quadrupole field generated by per-
manent magnets. A detailed technical description of this
CB solution is given in [17,18]. The 3 families of octupoles
(see Fig. 3), are placed in phase with the sextupoles (𝑚 = 0).
Their integrated strengths are calculated from Eq. (1), giving

⃗𝑘oct = (-2.88×103, -8.50×103, 3.95×103) [m−3].
As predicted by the model, the optimal location of the oc-

tupole w.r.t the sextupole pairs, not only cancel for the linear
ADTS but also minimize all geometrical phase-dependent
octupole RDTs along with higher order terms. The evolution
of the sum of these terms as function of the triplet strength
applied 𝑤oct. ⃗𝑘oct, is shown in Fig. 4. The on-momentum
DA rises with 𝑤oct up to 7 times the original DA area.
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Figure 3: Twiss functions along one cell of a lattice option for
the upgrade of NSLS-II, based on Complex Bend technology.
The CB magnet is colored in purple, the sextupoles in green
and the 3 octupole families in pink.

Figure 4: Evolution of the sum of the geometrical phase-
dependent RDTs and the 6 2nd order ADTS terms, normal-
ized to their value without octupoles, as function of the
strength delivered by the octupole triplet 𝑤oct. ⃗𝑘oct, where

⃗𝑘oct is calculated from Eq. (1) and 𝑤oct is a weight factor.

Figure 5 shows the DA improvement of the error-free lattice,
with full octupole strength, simulated using ELEGANT [19]
tracking code. The simultaneous reduction of linear and
2nd order ADTS, confines the particle with large transverse
amplitude, within a much smaller area in the tune space,
as shown in Fig. 6. While this geometrical compensation
scheme has been consistently demonstrated on every other
upgrade lattice options for NSLS-II, in most cases, the oc-
tupoles in dispersion region has a relatively strong impact
on the momentum aperture (see Fig. 7) that needs to be
appropriately balanced for future optimizations. There is
2 families of chromatic sextupoles powered to correct the
natural chromaticity from (𝜉𝑥,𝜉𝑦) = (-160,-98) to (+2,+2).
The 3 pairs of sextupole (1 SF, 2 SDs) are separated by a
phase advance of (Δ𝜈𝑥,Δ𝜈𝑦)=(3𝜋,𝜋). The −ℐ𝑥,𝑦 between
each sextupole pair, cancels all geometrical sextupole RDTs
(𝑛 = 3) within one cell.

Figure 5: Dynamic aperture of the lattice without (left) and
with (right) octupoles. The on-momentum particles were
tracked for 1024 turns. The colorbar shows the tune diffusion
calculated as 𝐷 = log10(Δ𝜈2

𝑥 + Δ𝜈2
𝑦).

Figure 6: Tune shift comparison without octupoles for a DA
area of 21 mm2 (left) and with octupole triplet scheme for a
DA area of 112 mm2 (right).

Figure 7: Momentum acceptance. No RF and synchrotron
radiation included.

CONCLUSIONS

The nonlinear scheme proposed here, is an efficient and
robust way of minimizing locally, by-design, all geometri-
cal RDTs, from the sextupole to the dodecapole order. The
on-momentum DA can easily be tuned from the only knob
𝑤oct, independently of the value of the corrected natural
chromaticity. While the option of positioning the triplet in
dispersion region tends to degrade the momentum aperture,
the knowledge of an optimal sextupole/octupole configu-
ration for a quasi full geometrical compensation, will be
beneficial in future light source nonlinear optimization.
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