Author: Eichler, A.
Paper Title Page
TUPAB291 Subsystem Level Data Acquisition for the Optical Synchronization System at European XFEL 2167
 
  • M. Schütte, A. Eichler, T. Lamb, V. Rybnikov, H. Schlarb, T. Wilksen
    DESY, Hamburg, Germany
 
  The optical synchronization system for the European X-Ray Free-Electron Laser provides sub-10 femtosecond timing precision * for the accelerator subsystems and experiments. This is achieved by phase locking a mode-locked laser oscillator to the main RF reference and distributing the optical pulse train carrying the time information via actively propagation-time stabilized optical fibers to multiple end-stations. Making up roughly one percent of the entire European XFEL, it is the first subsystem to receive a large-scale data acquisition system [2] for storing not just hand-selected information, but in fact all diagnostic, monitoring, and configuration data relevant to the optical synchronization available from the distributed control system infrastructure. A minimum of 100 TB per year may be stored in a persistent archive for long-term health monitoring and data mining whereas excess data is stored in a short-term ring buffer for high-resolution fault analysis and feature extraction algorithm development. This paper describes scale, challenges and first experiences from the optical synchronization data acquisition system.
* S. Schulz et al., "Few-Femtosecond Facility-Wide Sync. of the European XFEL," in Proc. FEL’19
** T. Wilksen et al., "A Bunch-Sync. DAQ System for the European XFEL," in Proc. ICALEPCS’17
 
poster icon Poster TUPAB291 [0.281 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB291  
About • paper received ※ 14 May 2021       paper accepted ※ 17 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB298 First Steps Toward an Autonomous Accelerator, a Common Project Between DESY and KIT 2182
 
  • A. Eichler, F. Burkart, J. Kaiser, W. Kuropka, O. Stein
    DESY, Hamburg, Germany
  • E. Bründermann, A. Santamaria Garcia, C. Xu
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: Helmholtz Artificial Cooperation Unit
Reinforcement Learning algorithms have risen in popularity in recent years in the accelerator physics community, showing potential in beam control and in the optimization and automation of tasks in accelerator operation. The Helmholtz AI project "Machine Learning toward Autonomous Accelerators" is a collaboration between DESY and KIT that works on investigating and developing RL applications for the automatic start-up of electron linear accelerators. The work is carried out in parallel at two similar research accelerators: ARES at DESY and FLUTE at KIT, giving the unique opportunity of transfer learning between facilities. One of the first steps of this project is the establishment of a common interface between the simulations and the machine, in order to test and apply various optimization approaches interchangeably between the two accelerators. In this paper we present the first results on the common interface and its application to beam focusing in ARES, and the idea of laser shaping with spatial light modulators at FLUTE.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB298  
About • paper received ※ 19 May 2021       paper accepted ※ 02 August 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB289 Machine Learning Based Spatial Light Modulator Control for the Photoinjector Laser at FLUTE 3332
 
  • C. Xu, E. Bründermann, A.-S. Müller, M.J. Nasse, A. Santamaria Garcia, C. Sax, C. Widmann
    KIT, Karlsruhe, Germany
  • A. Eichler
    DESY, Hamburg, Germany
 
  Funding: C. Xu acknowledges the support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
FLUTE (Ferninfrarot Linac- und Test-Experiment) at KIT is a compact linac-based test facility for novel accelerator technology and a source of intense THz radiation. FLUTE is designed to provide a wide range of electron bunch charges from the pC- to nC-range, high electric fields up to 1.2 GV/m, and ultra-short THz pulses down to the fs-timescale. The electrons are generated at the RF photoinjector, where the electron gun is driven by a commercial titanium sapphire laser. In this kind of setup the electron beam properties are determined by the photoinjector, but more importantly by the characteristics of the laser pulses. Spatial light modulators can be used to transversely and longitudinally shape the laser pulse, offering a flexible way to shape the laser beam and subsequently the electron beam, influencing the produced THz pulses. However, nonlinear effects inherent to the laser manipulation (transportation, compression, third harmonic generation) can distort the original pulse. In this paper we propose to use machine learning methods to manipulate the laser and electron bunch, aiming to generate tailor-made THz pulses. The method is demonstrated experimentally in a test setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB289  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB293 The Trip Event Logger for Online Fault Diagnosis at the European XFEL 3344
 
  • J.H.K. Timm, J. Branlard, A. Eichler, H. Schlarb
    DESY, Hamburg, Germany
 
  The low-level RF (LLRF) system at the European XFEL, DESY, is of major importance for a high-performant and reliable operation. Faults here can jeopardize the overall operation. Therefore, the trip event logger is currently developped, - a fault diagnosis tool to detect errors online, inform the operators and trigger automatic supervisory actions. Further goals are to provide information for a fault tree and event tree analysis as well as a database of labeled faulty data sets for offline analysis. The tool is based on the C++ framework ChimeraTK Application Core. With this close interconnection to the control system it is possible not only to monitor but also to intervene as it is of great importance for supervisory tasks. The core of the tool consists of fault analysis modules ranging from simple ones (e.g., limit checking) to advanced ones (model-based, machine learning, etc.). Within this paper the architecture and the implementation of the trip event logger are presented.  
poster icon Poster WEPAB293 [7.919 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB293  
About • paper received ※ 19 May 2021       paper accepted ※ 02 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB191 Physics-Enhanced Reinforcement Learning for Optimal Control 4150
 
  • A.N. Ivanov, I.V. Agapov, A. Eichler, S. Tomin
    DESY, Hamburg, Germany
 
  We propose an approach for incorporating accelerator physics models into reinforcement learning agents. The proposed approach is based on the Taylor mapping technique for simulation of the particle dynamics. The resulting computational graph is represented as a polynomial neural network and embedded into the traditional reinforcement learning agents. The application of the model is demonstrated in a nonlinear simulation model of beam transmission. The comparison of the approach with the traditional numerical optimization as well as neural networks based agents demonstrates better convergence of the proposed technique.  
poster icon Poster THPAB191 [0.846 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB191  
About • paper received ※ 11 May 2021       paper accepted ※ 29 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB287 Providing Computing Power for High Level Controllers in MicroTCA-based LLRF Systems via PCI Express Extension 4363
 
  • P. Nonn, A. Eichler, S. Pfeiffer, H. Schlarb, J.H.K. Timm
    DESY, Hamburg, Germany
 
  It is possible to connect the PCIe bus of a high performance computer to a MicroTCA crate. This allows the software on the computer to communicate with the modules in the crate, as if they were peripherals of the computer. This article will discuss the use of this feature in respect to accelerator control with a focus on High Level Controllers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB287  
About • paper received ※ 19 May 2021       paper accepted ※ 26 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)