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Abstract
Reinforcement learning algorithms have risen in pop-

ularity in the accelerator physics community in recent
years, showing potential in beam control and in the opti-
mization and automation of tasks in accelerator operation.
The Helmholtz AI project “Machine Learning Toward Au-
tonomous Accelerators” is a collaboration between DESY
and KIT that works on investigating and developing rein-
forcement learning applications for the automatic start-up
of electron linear accelerators. The work is carried out in
parallel at two similar research accelerators: ARES at DESY
and FLUTE at KIT, giving the unique opportunity of trans-
fer learning between facilities. One of the first steps of this
project is the establishment of a common interface between
the simulations and the machine, in order to test and apply
various optimization approaches interchangeably between
the two accelerators. In this paper we present first results on
the common interface and its application to beam focusing
in ARES as well as the idea of laser shaping with spatial
light modulators at FLUTE.

PROJECT GOAL
The authors in [1] have defined systems that can change

their behavior in response to unanticipated events during op-
eration as autonomous. While for self-driving cars different
levels of autonomy have already been detailed in standards
(SAE J3016), the definitions are less unique for the process
industry, let alone particle accelerator operation. In [2] de-
tailed levels for different kinds of process industry are given,
where accelerator operation fits within the definition of con-
trol room operation. Given the autonomy levels there, one
can conclude that accelerator operation varies from level
0 up to level 2, depending on the considered parts of the
facility and whether it is a user or research facility. This
means that in some cases only low-level automation (level 0)
is available, while “automated system assisted start-up, tran-
sition, steady state and shutdown” as well as ”manual fault
correction supported by decision support systems” (level 2)
is available in many user facilities. As a next step toward
level 3, automated plant shutdown, start-up and transition on
human request should be possible, which is the far-reaching
goal of this project. The demands to achieve such levels
will be even more pressing for future accelerators, which
tend to increase in complexity to provide exceptional beams
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for research applications. Dedicated accelerators for very
specific, medical and industrial applications may already
be compliant with level 4 or 5 with minimal or no human
supervision. A more flexible design from the start needs to
employ advanced control methods to reach the same level
of autonomy. However, this can be considered a sustain-
able investment to facilitate the reuse of such accelerators,
if requirements for applications and products change.

Achieving this can be supported by tools from artificial
intelligence (AI) and machine learning (ML), as it has been
widely recognized by the accelerator community [3]. For
this specific task, reinforcement learning (RL) appears to
be a promising solution due to its ability to learn solution
strategies looking into the future for complex problems, with-
out the need for explicit labels or a well-defined model of
the dynamics underlying the problem. In RL there exists
a decision maker, called the agent. The agent can interact
with the environment, the world in which the agent exists,
by taking an action. The environment has a state, which is
the immediate situation in which the agent finds itself. This
state might however only be partially observed, with the part
observed by the agent called an observation. By taking an
action, the states are changed according to some transition
dynamics, which are unknown to the agent. When an agent
takes an action, he gets to know the next observation as well
as the reward, which measures the immediate goodness of
an agent’s action in a given state. The strategy that the agent
employs to take an action given the current state is called
the policy. The goal is to find the policy that maximizes
the value function, which is the sum of (discounted) future
rewards over a time horizon or up to infinity expected under
some policy. There are different types of RL algorithms:
model-based ones that require or learn some model of the
environment dynamics and model-free ones that do not. In
model-free RL algorithms, one differentiates Q-learning ap-
proaches that learn the value function and policy gradient
methods that try to learn the optimal policy directly. A good
overview is provided in [4].

RL has been successfully used in accelerator operation
to solve various tasks. In [5], the deep-deterministic-policy-
gradient (DDPG) algorithm is used to optimize the booster
current at BESSY II in Berlin. At FERMI FEL, RL is ap-
plied to optimize the laser alignment system and different
algorithms are compared [6–8]. Furthermore, the output
energy as well as the terahertz (THz) radiation is optimized
in the beam-line by policy-gradient approaches [9]. Results
at CERN for trajectory steering in AWAKE and LINAC4 are
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Figure 1: Schematic overview of the FLUTE layout showing the diagnostics and magnets [10].

presented using the Q-learning approach NAF. Simulation
results with a high-fidelity GPU-accelerated online multi-
particle beam dynamics simulator for the A3C algorithm
are presented in [11]. Simulation studies on controlling the
micro-bunching instability with RL are presented in [12].
To satisfy low-latency requirements given by the longitudi-
nal beam dynamics, the RL controller was implemented on
hardware [13].

While autonomous start-up is the far reaching goal of this
project, a realistic goal is the control of the bunch profile
for two accelerators within the project (see Table 1) that are
very similar to each other. This will allow us to address the
interesting questions of transferability of such agents. The
results will therefore have an immediate impact on other
accelerators as well.

In order to address the transferability of agents from simu-
lation to experiment as well as from one facility to the other,
a shared code base is required in order to easily interchange
RL agents and use existing algorithms. Standard interfaces
such as the one defined by OpenAI Gym [14] are widely
used for this purpose in the RL community. Furthermore, to
enable the transfer from simulation to experiment or from
one facility to another, a standardized machine interface to
the experiment and simulation will be needed.

Table 1: Comparison of the Final Electron Beam parameters
for Two Linear Accelerators Considered in the Project

FLUTE ARES

Final energy [MeV] 40 - 50 100 - 155
Bunch charge [pC] 1 - 3000 0.5 - 30
Bunch length [fs] 1 - 300 0.2 - 10
Pulse repetition rate [Hz] 1 - 10 10 - 50

ACCELERATORS
ARES and FLUTE are two test facilities with accelerators

of similar characteristics, as shown in Table 1, dedicated
to research. They provide a unique environment to easily
explore algorithm transferability among facilities, helping
to determine how much facility-specific adaption is neces-
sary. This experience will be of major importance for the
long-term goal of automated start-up and the application
of algorithms to more complex user facilities such as the
European XFEL, which employs similar subsystems, e.g.
lasers for photoinjection, magnets for steering, etc.

FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a
test facility with a new versatile electron linear accelerator
for accelerator physics, as well as a source of intense broad-
band THz pulses for photon science [15]. Research topics
include the development of single-shot femtosecond (fs)
diagnostics [16], synchronization on a fs level, systematic
bunch compression, and electron beam instability studies.
The layout of FLUTE is shown in Fig. 1, where the low
energy section up to the first spectrometer is in operation. In-
stead of the linear accelerator (linac) module, a Faraday cup
is currently mounted on the straight beam pipe for charge
measurements.

ARES (Accelerator Research Experiment at SINBAD) is
an S-band radio frequency linac at the DESY Hamburg site
equipped with a photoinjector and two independently driven
traveling wave accelerating structures [17]. The main re-
search focus is the generation and characterization of sub-
femtosecond electron bunches at relativistic particle energy.
The generation of short electron bunches is of high interest
for radiation generation, i.e. by free electron lasers. The
limits of particle beam diagnostic technologies and novel
electron acceleration methods will also be investigated at
the site. The linac is currently upgraded with a magnetic
chicane and a particle beam diagnostic line including a Po-
lariX X-band transverse deflecting structure [18]. The final
layout of ARES is shown in Fig. 2.

FIRST STEPS

Using Spatial Light Modulators for Electron Beam
Shaping at KIT

The properties of an electron bunch created at an RF
photoinjector heavily depend on the RF-cavity design and
photocathode properties, as well as on the characteristics of
the driving laser. We propose to use spatial light modulators
(SLMs) to achieve laser pulse shaping and modulation [19].
However, the SLM cannot work with the UV laser required
for the photocathode and must be placed before the third har-
monic generation stage. The optical propagation and other
non-linear optical transformations can distort the modulated
laser and degrade the pulse shaping quality. To mitigate this
effect, we train a convolutional neural network to learn the
inverse process of the optical propagation. Compared to
the classical Gerchberg-Saxton method [20], this ML-based
approach produces better transverse laser shaping results on
a proof-of-principle setup. A more detailed discussion is
given in [21]. In the future, the 3D distribution of the laser
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Figure 2: Schematic overview of the ARES layout.

pulse can be used as input for an RL algorithm to provide
adaptive control.

Reinforcement Learning for Beam Parameter Op-
timization at DESY

Focusing and centering the electron beam on diagnostic
screens along the beam line are frequently performed and
time-consuming tasks during start-up and working point
changes. They are also well defined tasks suitable as proof
of concept applications for RL on particle accelerators. We
consider focusing and centering the beam using a quadrupole
triplet and corrector magnets in the ARES experimental area
(EA) as a particular instance of this type of task. We propose
an RL formulation of this task that enables an RL agent to
focus and center the beam in just a few iterations and thereby
significantly reduce the time required for optimizing the
beam parameters. Such an RL agent observes the beam
parameters on the screen and current magnet settings in
order to propose a set of actions for changing the magnets’
settings, improving the beam’s focusing and centering. A
flow chart of this setup is shown in Fig. 3.

Agent
Observation (Beam Parameters and Magnet Settings)

Reward

Action (Magnet Changes)

Reward Function

Quadrupole and Corrector Magnets Screen

Beam Parameters

Figure 3: RL environment for beam optimisation in the
ARES EA. The RL environment is shown in beige with the
accelerator (or simulation) shown in grey. Quadrupoles are
denoted in red, cyan and blue denote vertical and horizontal
correctors respectively.

The DDPG [22] and TD3 [23] algorithms were tested,
and further investigations of policy gradient methods such
as PPO [24] are planned. Initial results on simulations us-
ing DDPG and TD3 are promising and demonstrated the
algorithm’s ability to solve the beam optimization task. A
measurement campaign at the ARES accelerator has been
carried out as well. Preliminary agents demonstrated their
ability to transfer well from simulation to the real machine.
Figure 4 shows a screen image taken at ARES before and
after focusing by an RL agent.

(a) ARES step 0. (b) ARES step 9.

Figure 4: (a) Before and (b) after running a trained DDPG
agent at ARES. The beam focus is clearly improved.

Transferability
A quadrupole triplet with correctors similar to the one

in the ARES EA can be found at FLUTE. While similar
in structure, the exact specifications of these two sections
differ between the two accelerators. In order to test the trans-
ferability of the agents trained on ARES, an environment
representing the appropriate section of FLUTE was created.
First tests have shown that the RL agents trained on ARES
were able to optimize the beam parameters on the FLUTE
accelerator as well.

For the purpose of this initial transferabilty test, we de-
veloped a shared interface built around OpenAI Gym. As
a result both facilities are compatible with this important
RL standard and able to transfer agents between machines,
as well as from simulation to machine without any code
modifications. This interface is general enough to be easily
adapted to other accelerator-related problems.

SUMMARY AND OUTLOOK
“Machine Learning Toward Autonomous Accelerators”

is a cooperation between DESY and KIT. The goal of this
project is to develop novel, AI-inspired methods that aid in
the start-up of the accelerator in particular. Initial results
in the areas of electron beam shaping at FLUTE and beam
centering and focusing at ARES have demonstrated that
machine learning methods such as reinforcement learning
have the potential to substantially speed up accelerator start-
up through autonomous optimization and thereby maximize
the beam time available for experiments
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