
Overview and Current StatusOverview and Current Status

Jan Timm
IPAC 2021 Brazil - Hamburg, May the 26th 2021

The Trip Event Logger for The Trip Event Logger for
Online Fault Diagnosis at the Online Fault Diagnosis at the
European XFELEuropean XFEL

Page 2

Motivation, Intentions and Goals

Once you have identified the source of a fault, you may be able to avoid it.

If the understanding of the fault goes far enough and one has appropriate sensors,
one can prevent a fault also, before it occurs.

However, not only simple sensors are needed for this, analyses of the data are also
necessary in some cases.

But also a fast, maybe automatic detection, can avoid a long and tedious
troubleshooting and you can go directly to fixing the faults.

Fault tree analyses are a popular and suitable method for this.

Faults mean downtime, identifying and understanding faults can help increase runtime.

Page 3

Values (if …)
● Max crossed

● from above
● from below

● Min crossed
● from above
● from below

FaultStateCollector
ApplicationModule

Sort Report in PID /
(Trigger handler /
trigger logic (fta))

Telegram
Receiver

snap

DAQ
Traces

(loops ifs ...)
-Quench

-Pulse cut
…

X
F
E
L

D
O
O
C
S

C
H
A
N
N
E
L
S

Fault Telegram
DB

FaultStateBaseModule
ApplicationModule

Failure probabilities
fault tree diagram

…

events

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

TEL-G
Trip Event Logger

GUI
Human analysis

+ C++ based analysis

Boolean, Values, Traces

● Several blocks of one category
possible (multishredding)

● Each block has its own logic
(looks at same channels, but
telegram is different)

● Configurable, maybe different
modes (minimum, more
attention, everything)

● C++ based analysis should be
easily integratable

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

TRIPEVENT.STATE
*normal
*info
*fault
*warning

● if you look at all channels, one
error results in a cascade of
telegrams

● learn which analyses and
channels detect certain errors
on the efficientist

● with time you can switch off
redundant channels

Machine learning

Bool
-direct

-transition direction
(state changed)

TripEventReportGroup
VariableGroup

Page 4

Fault Tree Example
MTCA Crate with two power supply

MTCA

or

MTCA

and

PS 1 PS 2

P=0.5 P=0.5

P=0.25

The fault tree follows a simple logic:
P(A and B) = P(A) * P(B)
P(A or B) = P(A) + P(B) – P(A and B)

The events can follow
different models, e.g.
„law of decay“:
P = 1 - e^(-λt)

If you have sensors that
tell you what state the
component/event is in
and which are connected
to a P, then you can
automatically calculate a
certain probability of
failure.

L1.A2.M12 Main Manager

Page 5

Fault Tree Display
JDDD Event display

RF Station

LLRF Klystron CavitiesMLO

 All DOOCs
Interlock
channles

Interlock
Person/technical

Cryo
System HV Cables

LLRF s. Cavity
Coupler

ModulatorsLLRF m.

Click on it for next detailed view

Page 6

Fault Tree Display
JDDD Event display Llrf manager/subordinate

MTCA Signal
To Klystron

RF Input Signals Signal from
Manager O.

Human
Error

 Bugs Wrong
operation

 Firmware Software
(LLRF
Control
Server)

 Wrong
Config.

CPIM
HF filter

PreampClick on it for next
detailed view

Page 7

Fault Tree Display
JDDD Event display

MTCA

AMCs RTMs

Communication
From subordinate

SFP Cables

PS (ab A6)

TMG
X2TImerRTM

UVM
DAMC-TCK7 RTM

MPS
DAMC2RTM

uDWCs

uLOG(ab A6)

uRF backplane
Manager (ab A6)

 PS
PM-AC1000

 MCH
NMCH-CM

CPU
CCT AM 902/411

X2Timer

MPS
DAMC2V3

DAMC-TCK7

ADCs
SIS8300-L (L2)

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

Page 8

Values (if …)
● Max crossed

● from above
● from below

● Min crossed
● from above
● from below

FaultStateCollector
ApplicationModule

Sort Report in PID /
(Trigger handler /
trigger logic (fta))

Telegram
Receiver

snap

DAQ
Traces

(loops ifs ...)
-Quench

-Pulse cut
…

X
F
E
L

D
O
O
C
S

C
H
A
N
N
E
L
S

Fault Telegram
DB

FaultStateBaseModule
ApplicationModule

Failure probabilities
fault tree diagram

…

events

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

TEL-G
Trip Event Logger

GUI
Human analysis

+ C++ based analysis

Boolean, Values, Traces

● Several blocks of one category
possible (multishredding)

● Each block has its own logic
(looks at same channels, but
telegram is different)

● Configurable, maybe different
modes (minimum, more
attention, everything)

● C++ based analysis should be
easily integratable

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

TRIPEVENT.STATE
*normal
*info
*fault
*warning

● if you look at all channels, one
error results in a cascade of
telegrams

● learn which analyses and
channels detect certain errors
on the efficientist

● with time you can switch off
redundant channels

Machine learning

Bool
-direct

-transition direction
(state changed)

TripEventReportGroup
VariableGroup

Page 9

Event Tree (Analysis)

State of all events/components
analyzed by a module at the
moment of the very first transition
to a fault state.

The other way around.

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Failure probabilities
fault tree diagram

…

events

Page 10

Values (if …)
● Max crossed

● from above
● from below

● Min crossed
● from above
● from below

FaultStateCollector
ApplicationModule

Sort Report in PID /
(Trigger handler /
trigger logic (fta))

Telegram
Receiver

snap

DAQ
Traces

(loops ifs ...)
-Quench

-Pulse cut
…

X
F
E
L

D
O
O
C
S

C
H
A
N
N
E
L
S

Fault Telegram
DB

FaultStateBaseModule
ApplicationModule

Failure probabilities
fault tree diagram

…

events

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

TEL-G
Trip Event Logger

GUI
Human analysis

+ C++ based analysis

Boolean, Values, Traces

● Several blocks of one category
possible (multishredding)

● Each block has its own logic
(looks at same channels, but
telegram is different)

● Configurable, maybe different
modes (minimum, more
attention, everything)

● C++ based analysis should be
easily integratable

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

TRIPEVENT.STATE
*normal
*info
*fault
*warning

● if you look at all channels, one
error results in a cascade of
telegrams

● learn which analyses and
channels detect certain errors
on the efficientist

● with time you can switch off
redundant channels

Machine learning

Bool
-direct

-transition direction
(state changed)

TripEventReportGroup
VariableGroup

Page 11

Analysis module

• Input in our case are the 6 cavity signals for cavities
(for other components this could also be traces,
scalar or bools).

– But also meta data and parameter about the
operation mode of the machine if necessary.

• The output could also be a traces, scalars etc.

– e.g. written in hdf5 for further investigation,
especially in the case of offline analysis,

– but you must also evaluate the output for the TEL
and break it down to at least 3 states: off, normal,
(warning1 .. warningN), failure.

• Each module must know its location, time and
macropulse number.

C++ written analysis libraries. Each represents an event / component in the Fault/Event Tree

Bool
-direct

-transition direction
(state changed)

Values (if …)
● Max crossed

● from above
● from below

● Min crossed
● from above
● from below

Traces
(loops ifs ...)

-Quench
-Pulse cut

…

Machine learning

Page 12

Values (if …)
● Max crossed

● from above
● from below

● Min crossed
● from above
● from below

FaultStateCollector
ApplicationModule

Sort Report in PID /
(Trigger handler /
trigger logic (fta))

Telegram
Receiver

snap

DAQ
Traces

(loops ifs ...)
-Quench

-Pulse cut
…

X
F
E
L

D
O
O
C
S

C
H
A
N
N
E
L
S

Fault Telegram
DB

FaultStateBaseModule
ApplicationModule

Failure probabilities
fault tree diagram

…

events

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

TEL-G
Trip Event Logger

GUI
Human analysis

+ C++ based analysis

Boolean, Values, Traces

● Several blocks of one category
possible (multishredding)

● Each block has its own logic
(looks at same channels, but
telegram is different)

● Configurable, maybe different
modes (minimum, more
attention, everything)

● C++ based analysis should be
easily integratable

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

TRIPEVENT.STATE
*normal
*info
*fault
*warning

● if you look at all channels, one
error results in a cascade of
telegrams

● learn which analyses and
channels detect certain errors
on the efficientist

● with time you can switch off
redundant channels

Machine learning

Bool
-direct

-transition direction
(state changed)

TripEventReportGroup
VariableGroup

Page 13

Application Core Analysis module

• Input are the results of analysis module and the states

– But also meta data and parameter about the operation
mode of the machine if necessary.

• The output:

– State and Report
• Each module must know its location, time and macropulse

number.

• Intervention

Fault State Collector

• Define a duration fault time, starts with the first fault.

• Sort Events by time.

• Intervention

C++ written analysis libraries.

TRIPEVENT.STATE
*normal
*info
*fault
*warning

TripEventReportGroup
Variable(Consistensy)Group

TRIPEVENT.REPORT

● timestamp
● macro pulse number
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

FaultStateBaseModule
ApplicationModule

Page 14

Values (if …)
● Max crossed

● from above
● from below

● Min crossed
● from above
● from below

FaultStateCollector
ApplicationModule

Sort Report in PID /
(Trigger handler /
trigger logic (fta))

Telegram
Receiver

snap

DAQ
Traces

(loops ifs ...)
-Quench

-Pulse cut
…

X
F
E
L

D
O
O
C
S

C
H
A
N
N
E
L
S

Fault Telegram
DB

FaultStateBaseModule
ApplicationModule

Failure probabilities
fault tree diagram

…

events

“Event Tree Analysis” (ETA)

run

fail time

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

TEL-G
Trip Event Logger

GUI
Human analysis

+ C++ based analysis

Boolean, Values, Traces

● Several blocks of one category
possible (multishredding)

● Each block has its own logic
(looks at same channels, but
telegram is different)

● Configurable, maybe different
modes (minimum, more
attention, everything)

● C++ based analysis should be
easily integratable

TRIPEVENT.REPORT

● timestamp
● PID
● Location
● Sub-location
● Transition Direction
● History

● Category
● Fault type
● Analyzer
● Date of analysis

TRIPEVENT.STATE
*normal
*info
*fault
*warning

● if you look at all channels, one
error results in a cascade of
telegrams

● learn which analyses and
channels detect certain errors
on the efficientist

● with time you can switch off
redundant channels

Machine learning

Bool
-direct

-transition direction
(state changed)

TripEventReportGroup
VariableGroup

Page 15

Implementation

The previous slide shows something like the workflow we want to follow.

The next slides are about the actual implementation and how the trip event logger is
connected to the different components like DAQ, control system, HPC cluster and
analysis methods.

Within the Application Core based Trip Event Logger is really the logic that collects all
the information and triggers the sending of a fault telegram. Since we are sitting
directly in the control system, decisions could also be made here to anticipate
possible faults.

Page 16

Trip Event Logger

ChimeraTK
Application Core
Analysis Module

TRIPEVENT
Reports
States

Analysis Modules

- C++
- MATLAB

(-PYTHON)
(-NN)

-…

setData(&raw)
setData(&ttf2_daq_getdata)

GetParameter()
Calculate()

WriteResults(“results.h5”)
Evaluate() → state

Data Sets
For long term use

-Labled data
-Trainings data
-Simulated Data
.raw (MCS DAQ)

.hdf5

DOCCS DAQ Snap
Sample reduced
MCS DAQ Data

Not yet automated

Ladybug
Offline Module

Analysis adapter
for HPC

Command line tool

Other scripts
Docker container

File and
data set manger

DOOCS
Control System

OPC-UA
EPICS

(TANGO)

Fault Tree
Event display

Failure probability calculation
Not yet implemented

states

Fault State Collector
-Event tree

(global state of all modules
at the moment of first transition

to a fault)
Not yet implemented

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Detailed Results

Page 17

Trip Event Logger

Telegrams are collected, as for fault tree analysis and for collecting data of interest.

• Telegram: failure state, location, time, macropulse number, (link to data, failure
probability).

• ChimeraTK Application Core [1] [2]
– This not only enables monitoring, but also allows you to intervene in the control system.

– There are several control system backends. (DOOCS, OPC-UA, EPICS, (TANGO))

– Thread management is under the hood.

– Full sample rate. Scalable, if enough computing power is available.

• An analysis of the parity space will be part of this soon (and the first module), developed
by Ayla Nawaz [3].

It should detect failures and than report them with a failure telegram.

Page 18

Trip Event Logger

ChimeraTK
Application Core
Analysis Module

TRIPEVENT
Reports
States

Analysis Modules

- C++
- MATLAB

(-PYTHON)
(-NN)

-…

setData(&ctk)
setData(&ttf2_daq_getdata)

GetParameter()
Calculate()

WriteResults(“results.h5”)
Evaluate() → state

Data Sets
For long term use

-Labled data
-Trainings data
-Simulated Data
.raw (MCS DAQ)

.hdf5

DOCCS DAQ Snap
Sample reduced
MCS DAQ Data

Not yet automated

Ladybug
Offline Module

Analysis adapter
for HPC

Command line tool

Other scripts
Docker container

File and
data set manger

DOOCS
Control System

OPC-UA
EPICS

(TANGO)

Fault Tree
Event display

Failure probability calculation
Not yet implemented

states

Fault State Collector
-Event tree

(global state of all modules
at the moment of first transition

to a fault)
Not yet implemented

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Detailed Results

Page 19

Method development for anomaly detection

• Current workflow:

– Development of analysis in MATLAB on sample reduced DAQ data.

– Automatically generated C MATLAB code with semi-autmomatic integration in our
tools for the MAXWELL cluster.

• Development of analysis modules directly in C++

– This guarantees us a good cooperation with the rest of the Helmholtz
Gemeinschaft.

– There are ideas to use CINT the C++ Interpreter from ROOT @ CERN.

From MATLAB to C++

Page 20

Trip Event Logger

ChimeraTK
Application Core
Analysis Module

TRIPEVENT
Reports
States

Analysis Modules

- C++
- MATLAB

(-PYTHON)
(-NN)

-…

setData(&raw)
setData(&ttf2_daq_getdata)

GetParameter()
Calculate()

WriteResults(“results.h5”)
Evaluate() → state

Data Sets
For long term use

-Labled data
-Trainings data
-Simulated Data
.raw (MCS DAQ)

.hdf5

DOCCS DAQ Snap
Sample reduced
MCS DAQ Data

Not yet automated

Ladybug
Offline Module

Analysis adapter
for HPC

Command line tool

Other scripts
Docker container

File and
data set manger

DOOCS
Control System

OPC-UA
EPICS

(TANGO)

Fault Tree
Event display

Failure probability calculation
Not yet implemented

states

Fault State Collector
-Event tree

(global state of all modules
at the moment of first transition

to a fault)
Not yet implemented

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Detailed Results

Page 21

Tools for Maxwell

With these modules you can also analyses DAQ data.

Very primitive parallelization
– The structure of the problem and the high amount of data allow to choose the simplest parallelization.

– You start the job as often as CPUs are in the node.

– The number of macropulses investigated determines the job duration.

• Docker container with all dependencies, ubuntu16, DOOCS, ChimeraTK,
ARMADILLO...

• Ladybug is connecting the modules with ttf2looper and the DAQ data.

• With bash scripts and a dataset manager you can submit jobs based on slurm e.g. to
the MAXWELL cluster.

• Merge tool for handy result data files.

Ladybug

Page 22

Trip Event Logger

ChimeraTK
Application Core
Analysis Module

TRIPEVENT
Reports
States

Analysis Modules

- C++
- MATLAB

(-PYTHON)
(-NN)

-…

setData(&raw)
setData(&ttf2_daq_getdata)

GetParameter()
Calculate()

WriteResults(“results.h5”)
Evaluate() → state

Data Sets
For long term use

-Labled data
-Trainings data
-Simulated Data
.raw (MCS DAQ)

.hdf5

DOCCS DAQ Snap
Sample reduced
MCS DAQ Data

Not yet automated

Ladybug
Offline Module

Analysis adapter
for HPC

Command line tool

Other scripts
Docker container

File and
data set manger

DOOCS
Control System

OPC-UA
EPICS

(TANGO)

Fault Tree
Event display

Failure probability calculation
Not yet implemented

states

Fault State Collector
-Event tree

(global state of all modules
at the moment of first transition

to a fault)
Not yet implemented

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Detailed Results

Page 23

DAQ

• Only sample reduced rate (1,8k samples, float)

• MCS-DOOCS data format

– Very fast and smart!

– Unwiedly in C/C++ → A small library can help here (ttf2looper.h)

– Not common, hdf5 would be better.

• Not all channels of interest are available in the DAQ, but maybe in DOOCS history.

• Ring buffer with ~ 1 week samples reduced data on dCache, now available on Maxwell.

• Local histories.

The current DAQ system is provided by MCS.

Page 24

Trip Event Logger

ChimeraTK
Application Core
Analysis Module

TRIPEVENT
Reports
States

Analysis Modules

- C++
- MATLAB

(-PYTHON)
(-NN)

-…

setData(&raw)
setData(&ttf2_daq_getdata)

GetParameter()
Calculate()

WriteResults(“results.h5”)
Evaluate() → state

Data Sets
For long term use

-Labled data
-Trainings data
-Simulated Data
.raw (MCS DAQ)

.hdf5

DOCCS DAQ Snap
Sample reduced
MCS DAQ Data

Not yet automated

Ladybug
Offline Module

Analysis adapter
for HPC

Command line tool

Other scripts
Docker container

File and
data set manger

DOOCS
Control System

OPC-UA
EPICS

(TANGO)

Fault Tree
Event display

Failure probability calculation
Not yet implemented

states

Fault State Collector
-Event tree

(global state of all modules
at the moment of first transition

to a fault)
Not yet implemented

-event 0:timestamp 32,PID...
-event 0:timestamp 33,PID...
-event 0:timestamp 34,PID...
...

Detailed Results

Contact

Deutsches

Elektronen-Synchrotron

www.desy.de

Jan Timm

DESY - MCS4

Jan.horst.karl.timm@desy.de

Thank you If you are interested in

working on the project,

there will be a job

posting soon. Feel free

to contact us:

Annika Eichler

annika.eichler@desy.de

Julien Branlard

julien.branlard@desy.de

Holger Schlarb

holger.schlarb@desy.de

mailto:Jan.horst.karl.timm@desy.de
mailto:annika.eichler@desy.de
mailto:julien.branlard@desy.de

Page 26

References
[1] Varghese, G. et al. “ChimeraTK - A Software Tool Kit for Control Applications.” (2017).

[2] ChimeraTK Repository, https://github.com/ChimeraTK

[3] Nawaz, A. et al. “Anomaly Detection for the European XFEL using a Nonlinear Parity
 Space Method.” IFAC-PapersOnLine 51 (2018): 1379-1386.

References

https://github.com/ChimeraTK

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

