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Abstract
Noise can have a significant impact on the beam dynam-

ics in the LHC, enhancing diffusion processes and leading
to emittance blowup. In order to study the details of such
effects with computer simulations, a new set of tools is be-
ing developed. In particular, a demonstrator GPU-based
particle tracker has been built profiting from the technology
provided by the NVRTC Cuda library. The performance
of the tracker for short beam dynamic simulations, in the
presence of many macroparticles, is highly promising. In
addition, refined Fourier analysis has been performed on
the tracking data by using the Numerical Analysis of Fun-
damental Frequencies (NAFF) algorithm. After thorough
inspection, several alternatives to its fundamental steps have
been tested in a modern C++ implementation. The method
was also used to produce frequency maps and benchmark
these tools with other simulations.

INTRODUCTION
Several sources of external noise in particle colliders such

as ground motion, power supply ripple, Crab Cavities RF rip-
ples and transverse damper may have detrimental effects on
the beam dynamics, leading to transverse emittance growth,
halo population and losses by enhancing diffusion mecha-
nisms, especially in presence of strong non-linearities and
beam-beam effects [1–3]. Such mechanisms, which are not
yet fully understood, result in a reduction of the machine
performance in terms of delivered luminosity.
We aim to study the impact of noise with beam-beam

effect in the LHC, adopting the weak-strong approximation
in which only a single beam is tracked while the beam-beam
lenses (both for the head-on and long-range interactions) are
static. This approximation is well suited for particles with an
action of a few sigma, whose dynamics determines both the
tail evolution and the losses, without being highly influenced
by the coherent motion of the beam core. Furthermore, such
treatment of the beam-beam effect enables the independent
tracking of each macroparticle in a distribution and therefore,
the simulations can be performed in parallel.
To this end, we choose to explore the capabilities of

Graphic Processing Units (GPU) for particle tracking pur-
poses. Nowadays, these devices present thousands of com-
puting cores, which can be exploited for parallelisation. A
technology demonstrator has been built in C++ profiting
from the CUDA NVRTC library which allows just-in-time
compilation of the machine lattice into GPU code [4]. This
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approach aims at maximizing the execution speed and the
results are very promising.
For the data analysis in presence of noise, the NAFF

method of Laskar has been reviewed [5, 6]. A new imple-
mentation of the algorithm has been written in modern C++
and interfaced to Python. In this way, the steps of the algo-
rithm have been inspected and several alternatives have been
identified and tested. An overview of these tools is given in
the next sections.

ALGORITHM DESCRIPTION
The NAFF algorithm provides a quasi-periodic approxi-

mation of a complex signal ψ(t) over a time interval [0,T].
Compared to the Fast Fourier Transform (FFT) it allows
for a more accurate determination of both the frequencies
and the Fourier coefficients of the signal with a much faster
convergence [7].
The first step of the NAFF algorithm consists of an FFT,

which provides a rough indication of the locations of the
main spectral components; for this we rely on the FFTW
library [8]. In order to refine the determination of the fre-
quency along with its complex amplitude, the Fourier inte-
gral is introduced:

φ( f ) = 〈ψ(t) , ei2π f 〉 =
1
T

∫ T

0
ψ(t) e−i2π f t x(t) dt (1)

where x(t) denotes a window function.
Windows are used to reduce the leakage effect which

occurs as a result of processing finite-duration signals [9].
Figure 1 illustrates the Fourier integral with a rectangular
window (x(t) = 1) for two signals composed by one and
two frequencies respectively. The appearance of side lobes
is caused by the boundary discontinuities of the truncated
signal multiplied with the rectangular window, which is
assumed to be periodic from the Fourier integral. This effect
leads to frequency and amplitude displacement.
Three types of window functions were tested: Taylor,

Dolph-Chebyshev and Hann window. All the windows ex-
hibited similar results in terms of accuracy and convergence.
In this paper, we focus on the Hann window which can be
defined as [10]:

xh(t) =
2h(h!)2(1 + cos πt)h

(2h)!
(2)

where h is the power of the window, allowing to tune the
ratio between side lobe attenuation and main-lobe width. By
increasing h the side lobe level is significantly reduced at
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Figure 1: A signal with one (red) and two (black) frequen-
cies. The main component f1 is equal in both cases, however
in the second one a shift in amplitude and frequency is ob-
served due the interaction with the side lobes of the second
frequency f2.

the expense of a wider main lobe. By using this window, the
shift in amplitude or/and frequency is suppressed.
The NAFF algorithm proceeds to the determination of

the refined spectral component by maximising the Fourier
integral. Other merit functions were also examined.

The first alternative method is based on the minimization
of the residual of the Fourier integral. The refined frequency
is the one which, when subtracted, results in the minimum
area of the residual frequency-domain signal, computed in
an interval of width 2δ around the FFT peak. This merit
function can be defined as:

φ( f ) =
∫ fFFT+δ

fFFT−δ
〈ψf (t), ei2π f

′

〉df ′ (3)

with
ψf (t) = ψ(t) − proju f

(ψ(t)) (4)

where u f = ei2π f for the first frequency component and its
amplitude is calculated by the projection on the signal:

proju f
(ψ(t)) =

〈ψ(t), u f 〉

〈u f , u f 〉
u f (5)

The integration requires several evaluations of the Fourier
integral in the fFFT ± δ interval and therefore more compu-
tational power is required. However, this method proved to
be more numerically accurate when tested with simulation
data.

The last merit function concerns the minimization of the
residual energy in time domain. The removal of the accurate
frequency component results in a minimum residual signal
in time domain. In this case, the merit functions is defined
as:

φ( f ) =
N∑
t=1
(ψf (t))2 (6)

It should be noted that this merit function does not enable
the use of the window, as it does not involve computations of
the Fourier integral where the window function is included,
thus it is not well suited for signals with strong frequency
crosstalk.
The maximization of the merit functions is based on the

Brent algorithm and we use the implementation available in

Boost [11,12]. The refined frequency is then subtracted from
the signal and the search is iterated for additional spectral
components.

From the second frequency onwards, the new components
ui must be orthogonalised to the previous ones before the
subtraction. We implemented the modified Gram-Schmidt
method, in order to construct orthonormal basis functions:

u⊥i = ui −
i−1∑
j=1

proju⊥j (ui) (7)

The procedure is repeated until no relevant spectral compo-
nents are present in the signal.

The numerical integrations employ Hardy’s 7-point inte-
gration rule [5]. Furthermore, we foresee the possibility of
up-sampling the initial signal either with a linear interpo-
lation or with a cubic spline interpolation. The following
results were obtained with an up-sampling by a factor of 10
with the cubic spline interpolation.

SIMULATION RESULTS
Ad-hoc built signals were used in order to investigate the

behavior of the Hann window in two cases: In the case of
frequency crosstalk, when the lobes of two components are
overlapping and in the case of low SNR (Signal to Noise
Ratio).
In the first case, we use a cosine signal with two fre-

quency components ψ(t) = α cos(2π0.3t) + β cos(2π0.4t)
with t ∈ [0, N] where N is the number of samples and α, β
real constants with β > α. Figure 2 shows the evolution of
the determination of the frequency for an increasing num-
ber of points and with different orders of the Hann window.
The results are also compared with the case where only a
rectangular window is applied. Figure 2 indicates that, for
an incrementing number of turns, h = 5 shows the best
convergence. This outcome is in agreement with the theo-
retical result obtained by Laskar for the NAFF algorithm
implicating that the convergence asymptoticly scales with
1/T2h+2 [7]. Figure 2 also highlights a significant difference
in accuracy with the rectangular widow. It should be noted
that with less separation between the frequencies, higher
order windows show less accurate results due their broader
main lobe which increase the crosstalk.
The effect of noise on the efficiency of the windows was

investigated by introducing white noise in the signal with
an SNR of 9.7 dB. Based on Fig. 3, it can be seen that the
best convergence is achieved with windows of lower powers.
A possible explanation can be attributed to the fact that
these types of windows have a more narrow main-lobe and
therefore, they prove to be less susceptible to noise effects.
As shown in Fig. 4, due to their wider main lobe, higher
powers are more sensitive to noise, causing a displacement of
the Fourier integral, which has an impact both in frequency
and amplitude determination.
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Figure 2: The convergence of different orders of the Hann
window. fnominal is equal to the main frequency component
of the simulation data f1 = 0.4 and fcomputed is the frequency
calculated for the specified number of turns.

Figure 3: Convergence of different orders of the Hann win-
dow in the presence of white noise. fnominal is equal to
f1 = 0.4, fmean is themean value of the computed frequencies
for 100 different seeds of the white noise random generator
and the error bars represent one standard deviation.

Figure 4: The impact of white noise (SNR=9.7 dB) in the
efficiency of the different powers of the Hann window. The
solid lines represent signals with two components, while
dashed lines include only f1 = 0.31.

LHC RESULTS
We tested the proposed enhancements using real data

from a beam position monitor of the LHC with a 2mm
peak-to-peak amplitude. We compared the original NAFF

consisting of the maximization of the Fourier integral and
a Hann window h = 1 to the different merit functions, in-
cluding up-sampling. The results shown in Fig. 5 indicate
that up-sampling appears to be particularly relevant for less
than ∼ 40 turns. In all cases, good accuracy in the frequency
determination is achieved after a few turns.

Figure 5: Comparison of the NAFF algorithm (blue), which
does not include up-sampling, with the proposed improve-
ments.

GPU TRACKING DATA
The complete LHC lattice in collision, without beam-

beam, was imported into the GPU tracker demonstrator.
4 × 104 particles with initial coordinates covering a grid
in the (x, y) configuration space up to 6σ, were tracked for
104 turns. The turn-by-turn data have been post-processed
with the NAFF implementation. Diffusive frequency maps
as shown in Fig. 6 have been computed by determining the
tunes from the tracking data divided into two equal and con-
secutive time intervals [13]. The two tune determinations
for each particle are compared, the color code representing
their variation. The resolution of the frequency map pro-
vides detailed resonant lines both in the frequency and in the
configuration space with a clear correlation to the diffusive
processes. Thus, it shows the proof of concept for both the
tracker and the NAFF implementation.

Figure 6: Frequency and amplitude maps from the tracking
data of the GPU for the LHC lattice with h=3.

CONCLUSIONS
A new C++ implementation of the NAFF algorithm in-

terfaced to Python is available. We examined the impact of
frequency crosstalk and the presence of white noise in the
signal on the response of several orders of the Hann win-
dow. We inspected potential improvements which proved
to be promising in terms of convergence and accuracy for
frequency determination. The code was used in combination
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with a GPU-based tracker demonstrator for the examination
of the betatron motion in the LHC, proving the solidity of
these tools which are being prepared for noise studies.
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