Author: Kotzian, G.
Paper Title Page
MOPAB113 Usage of the Transverse Damper Observation Box for High Sampling Rate Transverse Position Data in the LHC 389
 
  • L.R. Carver, X. Buffat, A.C. Butterworth, W. Höfle, G. Iadarola, G. Kotzian, K.S.B. Li, E. Métral, M. Ojeda Sandonís, M.E. Söderén, D. Valuch
    CERN, Geneva, Switzerland
 
  The transverse damper observation box (ADTObsBox) is a device that makes accessible the bunch-by-bunch turn-by-turn data recorded from the pickups of the LHC transverse damper. This device can provide online transient analysis of different beam dynamics effects (tunes and damping times at injection, for example), while also under development is an online coherent instability triggering system. This paper will provide an overview of the current setup and plans for future upgrades, as well as detailing how it deals with the large volume of data being generated. The results of some analysis that rely on the ADTObsBox will also be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB117 Online Bunch by Bunch Transverse Instability Detection in LHC 397
 
  • M.E. Söderén, G. Kotzian, M. Ojeda Sandonís, D. Valuch
    CERN, Geneva, Switzerland
 
  Reliable detection of developing transverse instabilities in the Large Hadron Collider is one of the main operational challenges of the LHC's high intensity proton run. A full machine snapshot provided from the moment of instability is a crucial input to develop and fine tune instability models. The transverse feedback system (ADT) is the only instrument in LHC, where a full rate bunch by bunch transverse position information is available. Together with a sub-micron resolution it makes it a perfect place to detect transverse beam motion. Very large amounts of data, at very high data rates (8 Gb/s) need to be processed on the fly to detect onset of transverse instability. A very powerful computer system (so called ADTObsBox) was developed and put into operation by the CERN RF group, which is capable of processing the full rate data streams from ADT and perform an on the fly instability detection. The output of this system is a timing event with a list of all bunches developing instability, which is then sent to the LHC-wide instability trigger network to freeze other observation instruments. The device also provides buffers with raw position data for offline analysis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK093 Sensitivity of the LHC Transverse Feedback System to Intra-Bunch Motion 1916
 
  • G. Kotzian, W. Höfle, D. Valuch
    CERN, Geneva, Switzerland
 
  The LHC Transverse Feedback System is designed to damp and counteract all possible coupled bunch modes between the lowest betatron frequency and 20 MHz. The present study reveals that the analogue frontend processing scheme based on down converting the pick-up signal at the LHC RF frequency to baseband considerably extends the detected bunch movements visible to the feedback system to beyond 1 GHz. We develop an analytical model of the signal processing chain to explore the impact of even-symmetric and odd-symmetric intra-bunch movements on the detected beam position as a function of the longitudinal bunch shape. A set of equations is derived suitable for numerical simulations, or as a complement in particle tracking codes to further refine the behaviour of the LHC transverse feedback system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK094 Transverse Feedback Parameter Extraction from Excitation Data 1920
 
  • G. Kotzian
    CERN, Geneva, Switzerland
 
  In this paper we present a simple and fast approach to extract essential parameters of a transverse feedback system such as phase advances between pick-ups and kickers, fractional tune, kicker delay, or per-bunch transverse activity from discrete-time samples of position signals. In this approach the beam is excited and subsequent beam oscillations are recorded. Given that any number of pick-ups can be evaluated at once with only a marginal increase of transverse beam size this method is suitable for regular health checks of a transverse feedback system, e.g., for every injection. The fundamental idea relies on the reconstruction of the transverse phase space by means of digital filters. We sketch a simple mathematical model to illustrate the underlying method. Examples are given together with a set of filter kernels for the fractional tunes of the LHC transverse feedback system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK095 Possibilities for Transverse Feedback Phase Adjustment by Means of Digital Filters 1924
 
  • G. Kotzian
    CERN, Geneva, Switzerland
 
  In transverse feedback systems a phase adjustment is generally required to convert a beam position signal from a pick-up into a momentum correction signal used by a transverse kicker. In this paper we outline several possibilities for phase adjustments using only single pick-ups or the vector combination of two pick-ups. Analytical expressions are given as a function of the fractional tune and the betatron phase advance between the pick-up location and the kicker. The shortest possible digital filter is formulated, including a notch for closed orbit suppression and a free parameter to adjust for betatron phase. We introduce a novel, fully parametrized digital filter with the feature to be insensitive to variations in fractional tune. Examples are given for the SPS transverse feedback system and compared with measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA007 Impact of LHC and SPS Injection Kicker Rise Times on Lhc Filling Schemes and Luminosity Reach 2043
 
  • W. Bartmann, M.J. Barnes, J. Boyd, E. Carlier, A. Chmielinska, B. Goddard, G. Kotzian, C. Schwick, L.S. Stoel, D. Valuch, F.M. Velotti, V. Vlachodimitropoulos, C. Wiesner
    CERN, Geneva, Switzerland
 
  The 2016 LHC proton filling schemes generally used a spacing between injections of batches of bunches into SPS and LHC corresponding to the design report specification for the SPS and LHC injection kicker rise times, respectively. A reduction of the batch spacing can be directly used to increase luminosity without detrimental effects on beam stability, and with no increase in the number of events per crossing seen by the experiments. Measurements and simulations were performed in SPS and LHC to understand if a shorter injection kicker rise time and associated tighter batch spacing would lead to increased injection oscillations of the first and last bunches of a bunch train and eventually also a systematic growth of the transverse emittance. The results were used to define the minimum possible batch spacing for an acceptable emittance growth in LHC, with gains of reductions of about 10% possible in both machines. The results are discussed, including the potential improvement of the LHC luminosity for different filling schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)