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Abstract

The LHC Transverse Feedback System is designed to

damp and counteract all possible coupled bunch modes

between the lowest betatron frequency and 20 MHz. The

present study reveals that the analog frontend processing

scheme based on down converting the pick-up signal at the

LHC RF frequency to baseband considerably extends the

detected bunch movements visible to the feedback system to

beyond 1 GHz. We develop an analytic model of the signal

processing chain to explore the impact of even-symmetric

and odd-symmetric intra-bunch movements on the detected

beam position as a function of the longitudinal bunch shape.

A set of equations is derived suitable for numerical simu-

lations, or as a complement in particle tracking codes to

further refine the behavior of the LHC transverse feedback

system.

INTRODUCTION

The transverse feedback system (TFB) of CERN’s Large

Hadron Collider (LHC) measures bunch-by-bunch trans-

verse displacements and damps oscillatory movements by

means of fast electrostatic kickers. In order to detect the time-

varying beam position the signals of individual bunches are

processed in analog and digital [1], generating one position

reading per bunch per turn.

In the following we evaluate analytically the performance

of the system’s beam position signal processing scheme for

normalized longitudinal bunch profiles, λ(t), and transverse

oscillation patterns, x(t), as test inputs. For comparison the

true movement of the center-of-charges, x̄, given as

x̄ =

∫

x(t)λ(t) dt , (1)

for various excitation frequencies is plotted against the digital

representation of the beam normalized transverse position

calculated by the LHC TFB.

ANALYTIC MODEL

The block diagram in Fig. 1 outlines the signal processing

chain of the beam position hardware. Beam induced signals

in a pick-up are passed through an analog acquisition sys-

tem before they are converted to digital. An FPGA (field

programmable gate array) calculates from the data stream a

normalized position, bunch-by-bunch, which is independent

of the per-bunch intensity or the longitudinal bunch shape.

Analog Processing Scheme

The electromagnetic field generated by a circulating bunch

with normalized longitudinal profile, λ(t), and total charge,
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q, interfaces with a stripline type beam position monitor

(BPM), thereby induces a signal into two opposing elec-

trodes (denoted A and B), the amplitude of which depends

on its transverse position w.r.t. the vacuum chamber, x(t),

and the pick-up geometry, dx , (linear approximation for

small amplitudes). The BPM output voltage follows from,

VA,B (t) = ZT

t
∫

−∞

(

1 ±
x(τ)

dx

)

· qλ(τ) · hBPM(t − τ) dτ , (2)

with ZT as the transfer impedance, and hBPM(t) the impulse

response of the BPM. Note that Eq. (2) denotes a convolution

integral of the longitudinal bunch profile with the pick-up

response. The position information is encoded in the signal

amplitude, which is AM modulated, with a strong common

signal and with ideally only a small contribution by offset.

Peak voltages from the two electrodes are sufficiently

large to transmit the signals by means of equal-length low-

loss coaxial transmission lines from the beam line in the

underground tunnel to the electronics located on the surface.

The transmission line attenuates the raw pick-up signals to

levels acceptable for the hybrid and adds dispersion to the

pulse response, represented by hCOAX(t).

The first element at the surface is a 180◦ hybrid. It com-

bines the transmitted signals, V̄A and V̄B, to the sum signal,

VΣ, common to both pick-up electrodes, and it generates

the difference, or V∆-signal. The sum signal represents the

beam longitudinal profile, i.e. the bunch shape as well as the

number of charges, whereas the delta signal holds additional

information about the transverse position.

Assuming an ideal hybrid, i.e. no cross-talk between the

outputs, then

VΣ (t) =
1
√

2

[

V̄A(t) + V̄B (t)
]

, (3)

V∆(t) =
1
√

2

[

V̄A(t) − V̄B (t)
]

. (4)

Special types of bandpass filters, so called comb-filters,

shape both the sum and the delta signal in time-domain to a

well-defined wavelet [1]. The filter response is designed for

a time-limited rectangular window shorter than the nominal

bunch spacing, to ensure no mixing between adjacent bunch

signals. These filters have a center frequency of 400.8 MHz,

equivalent to the LHC RF frequency.

The bandpass filter output (denoted with a tilde), applied

for the Σ signal in Eq. (3) by inserting Eq. (2), results from,

ṼΣ (t) = qλ(t) ∗ hPU(t) , (5)

where

hPU(t) =
√

2ZT · hBPM(t) ∗ hCOAX(t) ∗ hBP(t) . (6)
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Figure 1: Block diagram of the beam position hardware signal processing scheme.

Equation (6) represents the cascade or convolution (here

and in the following indicated with the asterisk notation) of

time domain impulse responses, including the beam transfer

impedance, signal gain by
√

2 in the hybrid and passive

linear elements, shaping the pick-up response in time and

frequency domain.

Similarly, the ∆ signal output follows from Eq. (4) in

combination with Eq. (2) as,

Ṽ∆(t) =

(

x(t)

dx

· qλ(t)

)

∗ hPU(t) . (7)

Equations (5) and (7) describe the underlying formalism

in time domain, the impact of which can be seen in frequency

domain. Namely, convolution in time domain results in a

multiplication in frequency domain, or

ṼΣ ( jω) = qΛ( jω) · HPU( jω). (8)

On the other hand, multiplication in time domain as within

Eq. (7) results in a convolution in frequency domain, there-

fore,

Ṽ∆( jω) =

(

X ( jω)

dx

∗ qΛ( jω)

)

· HPU( jω) . (9)

For the case of a sinusoidal excitation where X ( jω) =

δ(±ωx ) the previous equation states that a transverse oscilla-

tion causes a shift in the spectrum of the longitudinal bunch

profile to the carrier frequencies at ±ωx ,

Ṽ∆( jω) =
1

dx

qΛ
[

j (ω ± ωx )
]

· HPU( jω). (10)

Within the Beam Position Module a set of mixers demod-

ulate the bandpass filtered signals in in-phase and quadrature

components (I/Q pairs for ∆ and Σ), followed by optimized

low pass filters of Gaussian shape to suppress mirror fre-

quencies and to shape the system response for low output

ripples.

The base-band response of the in-phase component

(even symmetry) is obtained by multiplication with c(t) =

cos(ωLOt), whereas the quadrature component (odd symme-

try) follows from multiplication with s(t) = sin(ωLOt).

Therefore, we obtain from Eq. (5) for the Σ-signal after

low-pass filtering,

IΣ (t) = kΣ
[

qλ(t) · c(t)
]

∗ g(t) ,

QΣ (t) = kΣ
[

qλ(t) · s(t)
]

∗ g(t) ,
(11)

where

g(t) = [hPU(t) · c(t)] ∗ hLP(t) . (12)

Equation (12) states that the response function of Eq. (6)

is demodulated to baseband and subsequently lowpass fil-

tered by hLP(t). At this point it is worth noting that the shape

of the baseband response of Eq. (11) is entirely defined by

g(t), and only its amplitude being a function of the demodu-

lated longitudinal profile. Signal level adjustments and other

coefficients are collected in a single scalar, kΣ.

Similarly, the I/Q-demodulation of the bandpass filtered

∆-signal provided by Eq. (7) evaluates as,

I∆(t) = k∆

{(

x(t)

dx

· qλ(t)

)

· c(t)

}

∗ g(t) ,

Q∆(t) = k∆

{(

x(t)

dx

· qλ(t)

)

· s(t)

}

∗ g(t) .

(13)

Here the order of multiplication is important: (1) Trans-

verse position modulation x(t), (2) Demodulation with c(t)

respectively s(t).

Just as for Eq. (11) also for Eq. (13) the shape of the

baseband response is defined solely by g(t), with the ampli-

tude now depending also on the excitation frequency and

the longitudinal profile.

Digital Position Calculation

Four analog-to digital converters (ADC), clocked beam

synchronously, sample the I/Q-pairs, providing each one

digitized sample per bunch and signal.

Normalized bunch position follows from taking the ratio

of the ∆-signal over the Σ-signal, XN = ∆/Σ, which is

independent of the per-bunch intensity. A more elegant way

was found by mathematically expanding the ratio with the

conjugate complex Σ∗,

XN =
∆

Σ

Σ
∗

Σ∗
=

∆ · Σ∗

|Σ |2
. (14)

By introducing the two phasors, ∆ = A · e jα and Σ =

B · e jβ ,

∆ = A cos α + j A sin α � I∆ + jQ∆ ,

Σ = B cos β + jB sin β � IΣ + jQΣ ,
(15)

we rewrite Eq. (14) in I/Q-components provided by the sam-

pling,

XN =
I∆IΣ +Q∆QΣ

IΣ
2
+QΣ

2
+ j

Q∆IΣ − I∆QΣ

IΣ
2
+QΣ

2
. (16)
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(a) Longitudinal profile λ( f ).
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(b) Even-symmetric excitation.
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(c) Odd-symmetric excitation.

Figure 2: Numerical results obtained from simulation.

For perfect alignment of the two phasors (i.e. α − β = 0)

the first term in Eq. (16) maximizes. Only the real part

of XN is used for the position calculation in the TFB for

feedback, whereas the imaginary part provides an indication

of head-tail activities and asymmetries in the longitudinal

bunch profile.

RESULTS

Simulation Model

Thanks to the sampling of the continuous-time signals,

where only one value is picked, it can be shown that the con-

volutions in Eqs. (11) and (13) reduce to definite integrals.

Hence, the described analytical model further reduces to a

more practical implementation which is essentially indepen-

dent of hardware parameters.

The time-varying transverse position signal across a bunch

and the longitudinal beam profile are multiplied with two

fixed frequency signals in quadrature,

c(t) = cos (ω0t) ,

s(t) = sin (ω0t) ,
(17)

where ω0/(2π) = 400.8 MHz for the case of the LHC TFB.

The longitudinal profile is demodulated to baseband as,

ÎΣ (t) =

∫

c(t)λ(t) dt ,

Q̂Σ (t) =

∫

s(t)λ(t) dt .

(18)

For the case of the delta signal the longitudinal profile is

first modulated with the position signal and subsequently

demodulated to baseband, as denoted by

Î∆(t) =

∫

c(t)x(t)λ(t) dt ,

Q̂∆(t) =

∫

s(t)x(t)λ(t) dt .

(19)

Finally, the normalization algorithm implemented in the

LHC TFB follows from,

xN =
Î∆ ÎΣ + Q̂∆Q̂Σ
(

ÎΣ
)2
+

(

Q̂Σ
)2
. (20)

Numerical Simulation

Figure 2(a) outlines the numerical input of the bunch

length simulation, based on Ref. [2]. There, the first notch

in the spectrum was found to be at around 1.5 GHz. This

profile is modulated with an even-symmetric excitation up

to 3 GHz. In Fig. 2(b) the blue trace indicates the result of

Eq. (20), and the red curve indicates the true movement of

the center-of-charges as given by Eq. (1). Clearly, the damper

sensitivity to symmetric intra-bunch motion is a function

of the longitudinal beam spectrum and extends significantly

beyond the highest betatron frequency from coupled bunch

oscillations up to 20 MHz, with the first notch appearing at

around 1.9 GHz due to the demodulation.

In Fig. 2(c) the imaginary part of Eq. (16) is evaluated for

odd-symmetric excitation (green). For the anti-symmetric

case no oscillation amplitude is detected by the normaliza-

tion algorithm (blue), confirming no movement of the center

of charges, and therefore odd modes are not visible to the

damper.

SUMMARY AND CONCLUSION

As a result of the analytical model a practical set of equa-

tions was found which describe the sensitivity of the LHC

TFB to intra-bunch motions. Numerical simulations re-

vealed that even-symmetric intra-bunch movements beyond

20 MHz are in fact seen with the current beam position sig-

nal processing of the LHC TFB, thereby corrective measures

are applied in baseband (up to 20 MHz) by the feedback con-

trol. Provided that only one value per bunch is available the

information on the excitation frequency is lost.

The damper sensitivity is a function of the longitudinal

bunch spectrum (and the oscillation frequency). Notches in

the beam spectra will render the damper blind for certain

frequencies, however, they do not coincide with the blind

frequencies as seen by the signal processing.

As part of these evaluations a modified processing scheme

is formulated, which has the potential of indicating anti-

symmetric intra-bunch oscillations e.g. for diagnostics.
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