Author: Gschwendtner, E.
Paper Title Page
MOPAB119 Beam Instrumentation Developments for the Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN 404
 
  • S. Mazzoni, M. Barros Marin, B. Biskup, A. Boccardi, T.B. Bogey, S. Burger, F.S. Domingues Sousa, E. Effinger, J. Emery, A. Goldblatt, I. Gorgisyan, E. Gschwendtner, A. Guerrero, L.K. Jensen, T. Lefèvre, D. Medina, B. Moser, G. Schneider, L. Søby, M. Turner, M. Vicente Romero, M. Wendt
    CERN, Geneva, Switzerland
  • B. Biskup
    Czech Technical University, Prague 6, Czech Republic
  • M. Turner
    TUG/ITP, Graz, Austria
  • V.A. Verzilov
    TRIUMF, Vancouver, Canada
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN aims to develop a proof-of-principle electron accelerator based on proton driven plasma wake-field acceleration. The core of AWAKE is a 10 metre long plasma cell filled with Rubidium vapour in which single, 400 GeV, proton bunches extracted from the CERN Super Proton Synchrotron (SPS) generate a strong plasma wakefield. The plasma is seeded using a femtosecond pulsed Ti:Sapphire laser. The aim of the experiment is to inject low energy electrons onto the plasma wake and accelerate them over this short distance to an energy of several GeV. To achieve its commissioning goals, AWAKE requires the precise measurement of the position and transverse profile of the laser, proton and electron beams as well as their temporal synchronisation. This contribution will present the beam instrumentation systems designed for AWAKE and their performance during the 2016 proton beam commissioning period.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB2 Starting Up the AWAKE Experiment at CERN 1261
 
  • E. Gschwendtner
    CERN, Geneva, Switzerland
 
  AWAKE, the Advanced Proton Driven Plasma Wake-field Acceleration Experiment at CERN was approved in 2013. The facility was commissioned in 2016 to perform first experiments to demonstrate the self-modulation in-stability (SMI) of a 400 GeV/c SPS proton bunch in a 10 m long Rubidium plasma cell. The plasma is created in Rb vapor via field ionization by a TW laser pulse. In the second phase starting late 2017, the proton driven plasma wakefield will be probed with an externally injected 10 ' 20 MeV/c electron beam. This paper gives an overview of the AWAKE facility, describes the successful commissioning of the laser and proton beam line, the plasma cell and diagnostics and shows the successful synchronization of the proton beam with the laser at the few ps level so that the facility is ready for the SMI physics runs. In addition the status of the electron acceleration exper-iment for late 2017 will be presented.  
slides icon Slides TUOBB2 [3.513 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK001 Upgrade of the Two-Screen Measurement Setup in the AWAKE Experiment 1682
SUSPSIK033   use link to see paper's listing under its alternate paper code  
 
  • M. Turner
    TUG/ITP, Graz, Austria
  • V. Clerc, I. Gorgisyan, E. Gschwendtner, S. Mazzoni, A.V. Petrenko
    CERN, Geneva, Switzerland
 
  The AWAKE project at CERN uses a self-modulated §I{400}{GeV/c} proton bunch to drive GV/m wakefields in a §I10{m} long plasma with an electron density of npe = 7 × 1014 \rm{electrons/cm}3. We present the upgrade of a proton beam diagnostic to indirectly prove that the bunch self-modulated by imaging defocused protons with two screens downstream the end of the plasma. The two-screen diagnostic has been installed, commissioned and tested in autumn 2016 and limitations were identified. We plan to install an upgraded diagnostics to overcome these limitations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK032 AWAKE Proton Beam Commissioning 1747
 
  • J.S. Schmidt, D. Barrientos, M. Barros Marin, B. Biskup, A. Boccardi, T.B. Bogey, T. Bohl, C. Bracco, S. Cettour Cave, H. Damerau, V. Fedosseev, F. Friebel, S.J. Gessner, A. Goldblatt, E. Gschwendtner, L.K. Jensen, V. Kain, T. Lefèvre, S. Mazzoni, J.C. Molendijk, A. Pardons, C. Pasquino, S.F. Rey, H. Vincke, U. Wehrle
    CERN, Geneva, Switzerland
  • J.T. Moody
    MPI-P, München, Germany
  • K. Rieger
    MPI, Muenchen, Germany
 
  AWAKE will be the first proton driven plasma wakefield acceleration experiment worldwide. The facility is located in the former CNGS area at CERN and will include a proton, laser and electron beam line merging in a 10 m long plasma cell, which is followed by the experimental diagnostics. In the first phase of the AWAKE physics program, which started at the end of 2016, the effect of the plasma on a high energy proton beam will be studied. A proton bunch is expected to experience the so called self-modulation instability, which leads to the creation of micro-bunches within the long proton bunch. The plasma channel is created in a rubidium vapor via field ionization by a TW laser pulse. This laser beam has to overlap with the proton beam over the full length of the plasma cell, resulting in tight requirements for the stability of the proton beam at the plasma cell in the order of ~ 0.1 mm. In this paper the beam commissioning results of the ~810 m long transfer line for proton bunches with 3·1011 protons/bunch and a momentum of 400 GeV/c will be presented with a focus on the challenges of the parallel operation of the laser and proton beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK061 Data Acquisition and Controls Integration of the AWAKE Experiment at CERN 1833
 
  • V.K.B. Olsen
    University of Oslo, Oslo, Norway
  • J.J. Batkiewicz, S. Deghaye, S.J. Gessner, E. Gschwendtner
    CERN, Geneva, Switzerland
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE experiment has been successfully installed in the CNGS facility at CERN, and is currently in its first stage of operation. The experiment seeks to demonstrate self-modulation of an SPS proton beam in a rubidium plasma, driving a wakefield of several gigavolt per meter. We describe the data acquisition and control system of the AWAKE experiment, its integration into the CERN control system and new control developments specifically required for AWAKE.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA105 Upgrading of Ageing CERN Underground Infrastructure to Fulfil the Space Requirements of New Facilities at CERN 3510
 
  • A. Martínez Sellés, E. Carlier, V. Di Murro, B. Goddard, E. Gschwendtner, F.J. Magnin, R.F. Morton, J.A. Osborne
    CERN, Geneva, Switzerland
  • V. Di Murro
    University of Cambridge, Cambridge, United Kingdom
 
  Particle accelerator technology is constantly being developed, and new equipment and machines replace the former ones to keep pushing the energy and intensity frontiers. Therefore, in order to meet the space requirements of new equipment, the infrastructure often needs to be modified, and given its rigid nature, this presents a challenge for the civil engineers to provide the needed space without compromising the safety and serviceability of the structures. In this paper two underground works are presented: a new cross-passage tunnel for the AWAKE experiment completed in 2014 and the future SPS Beam Dump. The challenges that must be faced are: (a) to make sure that the movements of the adjacent structures remain within admissible limits, (b) to design and execute the works such that the life span of the structure is not reduced, (c) To ensure the effectiveness of existing and new drainage systems during and after the works. For these purposes, in the frame of future tunnel asset management, the use of novel and conventional monitoring techniques plays a crucial role as it can predict in real time potential tunnel deformations which can lead, in the worst scenario, to tunnel failure  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)